• 제목/요약/키워드: Red Emission

검색결과 626건 처리시간 0.024초

A WISE/GALEX View of Red Sequence Galaxies

  • 고종완;황호성;손영종
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.37.1-37.1
    • /
    • 2012
  • We present mid-IR (MIR) and near-UV (NUV) properties of red sequence galaxies defined by optical color-magnitude relation. We use the Wide-field Infrared Survey Explorer (WISE) preliminary released data matched with the SDSS DR7/GALEX GR6. The red sequence galaxies with little emission lines show a wide spread of MIR (3.4um-12um) colors, implying a variety of MIR excess emission. We focus on the properties of the red sequence galaxies with MIR excess, comparing the properties of post-starburst galaxies to trace how galaxies migrate to the red sequence.

  • PDF

Preparation of PDP Red Phosphors by Impregnation Method and their Luminescence Properties

  • Han, Su-Yong;Lee, Dong-Kyu;Kim, Soo-Jong;Han, Chung-Hwa;Masaki, Takaki
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권2호
    • /
    • pp.57-61
    • /
    • 2008
  • The $(Y,Gd)_2O_3$:Eu phosphors were synthesized using the impregnation method in order to improve the performance of red-emitting phosphors for plasma display panels. $(Y,Gd)_2O_3$:Eu phosphors, with a particle size ranging from 150 and 200 nm, exhibited a strong red emission at around 615 nm. The emission intensity and particle size of the powders were controlled by adjusting the sintering temperature and raw material composition. The resulting particle size was very uniform and photoluminescence (PL) characteristic was excellent, being about twice that of commercial red phosphor.

Luminescence of $Eu^{3+}-doped\;GdCa_4B_3O_{10}$ phosphor under UV and VUV irradiation

  • Oh, Jae-Suk;Kwak, Chung-Heop;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1355-1359
    • /
    • 2006
  • Due to its efficient red emission, $Eu^{3+}$ ion has been doped in various host materials. $GdCa_4B_3O_{10}:Eu^{3+}$ phosphor for red emission has been prepared by solid state reaction. Photoluminescence properties for the phosphor under UV and VUV excitation were investigated. The $GdCa_4B_3O_{10}:Eu^{3+}$ phosphor under both excitation conditions shows typical red emission spectrum centered at 611 nm with several weak peaks due to energy transfer from $^5D_O\;to\;^7F_J(J=1,2,3,4)$ of $Eu^{3+}$ ion. On the other hand, the activator content exhibiting the concentration quenching under UV and VUV irradiation is 10 mole% and 2.5 mole%, respectively.

  • PDF

Merging, Recoiling, or Slingshotting of Supermassive Black Holes in a Red AGN 1659+1834

  • Kim, Dohyeong;Im, Myungshin
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.31.1-31.1
    • /
    • 2021
  • We report the Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (IFU) observation of a red active galactic nucleus (AGN), 2MASSJ165939.7+183436 (1659+1834). 1659+1834 is a prospective merging supermassive black hole (SMBH) candidate due to its merging features and double-peaked broad emission lines. The double-peaked broad emission lines are kinematically separated by 3000 km/s, with the SMBH of each component weighing at 10^8.9 and 10^7.1 solar mass. Our GMOS IFU observation reveals that the two components of the double-peaked broad emission line are spatially separated by 0.085" (~250pc). In different assumptions for the line fitting, however, a null (<0.05") or a larger spatial separation (~0.15") are also possible. For this GMOS IFU observational results of 1659+1834, various models can be viable solutions, such as the disk emitter and multiple SMBH models. We believe that these results show the need for future research of finding more multiple SMBH systems in red AGNs.

  • PDF

Photoreduction of Methyl Orange Catalyzed by Nile Red-Adsorbed $TiO_2$/Y Zeolites using Visible Light

  • Lee, Jeong-Jin;Kim, Yanghee;Minjoong Yoon
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.27-32
    • /
    • 2001
  • Photoreduction of Methyl Orange Catalyzed by Nile Red-Adsorbed TiO$_2$/Y zeolites. Nile Red was successfully adsorbed on TiO$_2$/Y zeolites and the absorption profile is very broad with maxima, ca. 630 nm. The peak is largely red-shifted compared to that observed in hydrocarbon solvents. Furthermore, a broad and largely Stokes shifted emission band as observed around 660 nm. The largely Stokes shifted emission band should be originated from the excited state structural changes. In order to understand the photocatalytic activities of Nile Red-adsorbed TiO$_2$/Y zeolite, the photoreduction of Methyl Orange(5.0$\times$10$^{-5}$ M) was studied using visible light beyond 320 nm. Methyl Orange was effectively reduced by Nile Red-adsorbed TiO$_2$/Y zeolite, indicating the photocatalytic activity of Nile Red-adsorbed TiO$_2$ zeolites was enhanced by about eight times higher than that of TiO$_2$/Y zeolite.

  • PDF

Diffusion Length Measurement of the Triplet Exciton in PHOLEDs by using Double Quantum Well Structure

  • 박원혁
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.225-225
    • /
    • 2016
  • PHOLED devices which have the structure of ITO/HAT-CN(5nm)/NPB(50nm)/EML(47nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) are fabricated to investigate the diffusion length of the triplet exciton by using double-quantum-well(DQE) EML structure. To fabricate DQW structures, Ir(ppy)3(2% wt) and Ir(btp)2(8% wt) are used as green and red emission zones, respectively. In DQW structured EML, as shown in Fig. 1, 1nm thick layers of green and red emission zones are located middle of the EML, and the distance between these wells(x) is changed from 0nm to 10nm. As shown in Fig. 2, the emission spectra from DQW PHOLED devices are changed with different x. The intensity of the green emission(520nm) is decreased when x is decreased, and it goes to near zero when x=0nm. This behavior can be identified as the diffusion of the triplet excitons from Ir(ppy)3 to Ir(btp)2 by the Dexter energy transfer(DET). From the external quantum efficiency(EQE) of the red emission, as shown in Fig. 3, the diffusion length of the triplet excitons can be determined by the equation of DET rate, R=A Exp(-2RDA/L), where RDA is donor-acceptor distance and L is the sum of the van der Wals radii. As a result, the measured data of the red EQEs with different x are identified to theoretical result from the equation of DET rate(Fig. 4). From this results, we could confirm that the diffusion length of the triplet excitons can be determined by using DQW structure and this method is very useful to investigate the behavior of the excitons in PHOLEDs.

  • PDF

ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI

  • Heo, Jeong-Eun;Lee, Hee-Won
    • 천문학회지
    • /
    • 제48권2호
    • /
    • pp.105-112
    • /
    • 2015
  • The symbiotic star V1016 Cygni, a detached binary system consisting of a hot white dwarf and a mass-losing Mira variable, shows very broad emission features at around 6825 Å and 7082 Å, which are Raman scattered O vi λλ 1032, 1038 by atomic hydrogen. In the high resolution spectrum of V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph these broad features exhibit double peak profiles with the red peak stronger than the blue counterpart. However, their profiles differ in such a way that the blue peak of the 7082 feature is relatively weaker than the 6825 counterpart when the two Raman features are normalized to exhibit an equal red peak strength in the Doppler factor space. Assuming that an accretion flow around the white dwarf is responsible for the double peak profiles, we attribute this disparity in the profiles to the local variation of the flux ratio of O vi λλ 1032, 1038 in the accretion flow. A Monte Carlo technique is adopted to provide emissivity maps showing the local emissivity of O vi λ1032 and O vi λ1038 in the vicinity of the white dwarf. We also present a map indicating the differing flux ratios of O vi λλ 1032 and 1038. Our result shows that the flux ratio reaches its maximum of 2 in the emission region responsible for the central trough of the Raman feature and that the flux ratio in the inner red emission region is almost 1. The blue emission region and the outer red emission region exhibit an intermediate ratio around 1.5. We conclude that the disparity in the profiles of the two Raman O vi features strongly implies accretion flow around the white dwarf, which is azimuthally asymmetric.

마이크로웨이브 합성법으로 제조한 Y2O3:Eu 적색 형광체의 발광 특성 (Luminescent Properties of Y2O3:Eu Red Phosphor Particles Prepared by Microwave Synthesis)

  • ;강태원;안진환;정경열
    • 한국분말재료학회지
    • /
    • 제16권3호
    • /
    • pp.203-208
    • /
    • 2009
  • $Y_2O_3$:Eu red phosphor was prepared by microwave synthesis. The crystal phase, particle morphology, and luminescent properties were characterized by XRD, SEM, and spectrofluorometer, respectively. The prepared $Y_2O_3$:Eu particles had good crystallinity and strong red emission under ultravioletet excitation. The crystallite size increased with calcination temperature and satuarated at $1200^{\circ}C$. The primary particle size initially formed was varied from 30 to 450 nm with microwave-irradiation (MI) time. It was found that the emission intensity of $Y_2O_3$:Eu phosphor strongly depends on the MI time. In terms of the emission intensity, it was recommended that the MI time should be less than 15 min. The emission intensity of $Y_2O_3$:Eu phosphor prepared by microwave syntehsis strongly depended on the crystallite size of which an optimal size range was 50-60 nm.

라돈 저감제를 이용한 건축자재의 라돈 방출 저감 연구 (A Study on Radon Emission Reduction of Construction Materials using Radon-reducing Agent)

  • 박경북;이상혁
    • 한국환경보건학회지
    • /
    • 제40권6호
    • /
    • pp.484-491
    • /
    • 2014
  • Objectives: A radon emission reducing agent was prepared using charcoal and zeolite, and the amount was measured after coating construction materials with the agent. The availability of the radon emission reducing agent was evaluated. Methods: Construction materials (red brick, cement brick, and gypsum board) coated with reducing agent were placed in a chamber to measure radon emissions. The construction materials were coated one through three times. The spread volume for brick and gypsum board was 50 mL and 75 mL per application, respectively. The amount of radon emitted was measured by RAD-7 after 48 hours. Results: The reduction ratio increased with the number of coatings, and the reduction ratios for red brick, cement brick, and gypsum board were 63.3, 73.6, and 58%, respectively, in the case of three coatings of RA-1. The reduction ratios for red brick, cement brick, and gypsum board were 42.8, 58.1, and 26.2%, respectively in the case of three coatings with RA-2. RA-1 was slightly better than RA-2 in radon emission reduction. Conclusions: Radon emissions from construction materials decreased according to the concentration of reducing agent coating, and it was more effective than existing methods.

다층구조 배색 유기발전소자의 제작 및 특성 분석에 관한 연구 (A Study on the Fabrication and Characteristic Analysis of Multiheterostructure White Organic Light Emitting Device)

  • 노병규;강명구;오환술
    • 한국전기전자재료학회논문지
    • /
    • 제15권5호
    • /
    • pp.429-434
    • /
    • 2002
  • In this paper, multiheterostructure white organic light-emitting device was fabricated by vacuum evaporation. The structure of white organic light-emitting device is ITO/CuPc/TPD/DPBi:DPA/$Alq_3/Alq_3$:DCJTB/BCT/$Alq_3$/Ca/Al. Three primary colors are implemented with DPVBi, Alq$_3$and DCJTB. The maximum EL wavelength of the fabricated white organic light-emitting device is 647nm. And the CIE coordinate is (0.33, 0.33) at 13 V. In the fabrication of white organic light-emitting devices with DCJTB, $Alq_3$, DPVBi, the EL spectrum has two peaks at 492nm, 647nm. Two peaks appeared because the blue light is combined with green light. The maximum wavelength of red light is not changed with applied voltage. After voltage applied, for the first time, the electrons met the holes in the red emission layer and emitted red light. And then the electrons moved to the green emission layer, and blue emission layer continuously. Finally, when all of the emission layer activated, the white light is emitted.