• Title/Summary/Keyword: Red Emission

Search Result 624, Processing Time 0.028 seconds

Synthesis and Photoluminescence Properties of CaWO4:Eu3+ Phosphors (CaWO4:Eu3+ 형광체의 합성과 발광 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.215-219
    • /
    • 2012
  • Red phosphors $Ca_{1-1.5x}WO_4:{Eu_x}^{3+}$ were synthesized with different concentrations of $Eu^{3+}$ ions by using a solid-state reaction method. The crystal structure of the red phosphors was found to be a tetragonal system. X-ray diffraction (XRD) results showed the (112) main diffraction peak centered at $2{\theta}=28.71^{\circ}$, and the size of crystalline particles exhibited an overall decreasing tendency according to the concentration of $Eu^{3+}$ ions. The excitation spectra of all the phosphors were composed of a broad band centered at 275 nm in the range of 230-310 nm due to $O^{2-}{\rightarrow}W^{6+}$ and a narrow band having a peak at 307 nm caused by $O^{2-}{\rightarrow}Eu^{3+}$. Also, the excitation spectrum presents several strong lines in the range of 305-420 nm, which are assigned to the 4f-4f transitions of the $Eu^{3+}$ ion. In the case of the emission spectrum, all the phosphor powders, irrespective of $Eu^{3+}$ ion concentration, indicated an orange emission peak at 594 nm and a strong red emission spectrum centered at 615 nm, with two weak lines at 648 and 700 nm. The highest red emission intensity occurred at x = 0.10 mol of Eu3+ ion concentration with an asymmetry ratio of 12.5. Especially, the presence of $Eu^{3+}$ in the $Ca_{1-1.5x}WO_4:{Eu_x}^{3+}$ shows very effective use of excitation energy in the range of 305-420 nm, and finally yields a strong emission of red light.

Developing N2O Emission Factor in Red Pepper Fields to Quantify N2O Emission of Agricultural Field

  • Kim, Gun-Yeob;Park, Woo-Kyun;Lee, Jong-Sik;Jeong, Hyun-Cheol;Lee, Sun-Il;Choi, Eun-Jung;Kim, Pil-Joo;Seo, Young-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.598-603
    • /
    • 2014
  • The level of nitrous oxide ($N_2O$), a long-lived greenhouse gas, in atmosphere has increased mainly due to anthropogenic sources, especially application of nitrogen fertilizers. Quantifying $N_2O$ emission in the agricultural field is essential to develop National inventories of greenhouse gases (GHGs) emission. The objective of this study was to develop emission factor to estimate direct $N_2O$ emission from agricultural field by measuring $N_2O$ emissions in the red pepper cultivating field from 2010 to 2012. Emission factor of $N_2O$ calculated from accumulated $N_2O$ emission, nitrogen fertilization rate, and background $N_2O$ emission was $0.0086{\pm}0.00043kg$ $N_2O-N\;kg^{-1}$ N resulted from three year experiment of the research sites. More extensive studies need to be conducted to develop $N_2O$ emission factors for other upland crops in the various regions of Korea because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices.

Tandem white organic light emitting diodes comprising of red, green, blue emission

  • Yang, Jung-Jin;Suman, C.K.;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.820-822
    • /
    • 2009
  • Tandem white organic light emitting diodes (WOLEDs) are fabricated by using a transparent interconnecting layer of Al:LiF composite/molybdenum oxides ($MoO_3$). We demonstrate two types of tandem WOLEDs consisting of two color emissions (red and blue emission) and three color emissions (red, green and blue emission). Tandem WOLED consisting of three color emission shows higher external quantum efficiency and current efficiency.

  • PDF

Luminescence Enhancement by Ba in SrTiO3:Pr, Al Red Phosphor for Field Emission Displays

  • Won, Chang-Whan;Lee, Jong-Eun;Won, Hyung-Il;Kim, Kwang-Bok;Song, Yoon-Ho;Kang, Seung-Youl;Koo, Kyoung-Wan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.743-745
    • /
    • 2006
  • The luminescence properties of $Sr_{1-x}Ba_xTiO_3:Pr$, Al red phosphor for Field Emission Displays (FEDs) have been investigated in powders prepared though solid-state reactions. $Sr_{1-x}Ba_xTiO_3:Pr$, Al red phosphors indicate a higher luminescent intensity, and have been found to have potential for field emission displays. The addition of Ba increased the luminescence intensity at 617 nm by up to 30%. Ba ions are effective in producing the energy transfers from host-to-activator in 4f-5d transitions.

Precipitation, Resolubilization and Luminescent Properties of Tris (2,2$^\prime$-diimine)Ruthenium(II) Complexes in Premicellar Anionic Surfactant Solutions

  • Park, Joon-Woo;Kim, Sung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.317-322
    • /
    • 1988
  • Premicellar precipitation, resolubilization and luminescing behaviors of $RuL_3^{2+}$ (L = bpy, phen, $Me_2bpy$) in aqueous alkylsulfate and sulfonate solutions were studied. Addition of the anionic surfactants to $RuL_3\;^{2+}$ solutions caused initial precipitation which was redissolved by further addition of the surfactants. The apparent solubility products $K_{sp}$'s of the precipitates were evaluated assuming 1:2 salt formation. The values were smaller as the ligand is more hydrophobic and the length of hydrocarbon chain of the surfactant is longer. The $K_{sp}$ values for L = bpy were constant over wide surfactant concentration range. However, those for L = $Me_2bpy$ and also for phen, but to less extent, increased with the surfactant concentration. The resolubilization of 1:2 salts was followed by red-shift of emission band and extensive emission quenching above critical concentration of the surfactants. The critical concentration was lower for more hydrophobic surfactant. For L = $Me_2bpy$, the blue-shifted emission band with enhanced emission intensity was observed in intermediate surfactant concentration region. The high ionic strength of media prevented the precipitate formation, but facilitated the red-shift of the emission bands. The results support that the precipitate is dissolved by accretion of surfactant anions to the salts to form water-soluble surfactant-rich $RuL_3$-surfactant anionic species. These species appeared to aggregate cooperatively to produce large clusters which exhibited the red-shifted emission.

Haematococcus pluvialis Cell-Mass Sensing Using Ultraviolet Fluorescence Spectroscopy

  • Lababpour, Abdolmajid;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1922-1929
    • /
    • 2007
  • A simple whole-cell-based sensing system is proposed for determining the cell mass of H. pluvialis using ultraviolet fluorescence spectroscopy. An emission signal at 368 nm was used to detect the various kinds of green, green-brown, brown-red, and red H. pluvialis cells. The fluorescence emission intensities of the cells were highest at 368 nm with an excitation wavelength of 227 nm. An excitation wavelength of 227 nm was then selected for cell-mass sensing, as the emission fluorescence intensities of the cell suspensions were highest at this wavelength after subtracting the background interference. The emission fluorescence intensities of HPLC-grade water, filtered water, and HPLC-grade water containing a modified Bold's basal medium (MBBM) were measured and the difference was less than 1.6 for the selected wavelengths. Moreover, there was no difference in the emission intensity at 368 nm among suspensions of the various morphological states of the cells. A calibration curve of the fluorescence emission intensities. and cell mass was obtained with a high correlation ($R^2=0.9938$) for the various morphological forms of H. pluvialis. Accordingly, the proposed method showed no significant dependency on the various morphological cell forms, making it applicable for cell-mass measurement. A high correlation was found between the fluorescence emission intensities and the dry cell weight with a mixture of green, green-brown, brown-red, and red cells. In conclusion, the proposed model can be directly used for cell-mass sensing without any pretreatment and has potential use as a noninvasive method for the online determination of algal biomass.

Red Emission Properties of Organic EL Having Hole Blocking Layer (정공블록킹층을 설치한 유기 EL의 적색발광특성)

  • Kim, Hyeong-Gweon;Lee, Eun-Hak
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.17-23
    • /
    • 2000
  • In this study, we prepared red organic light-emitting-diode(OLED) with a fluorescent dye(Sq)-doped and inserted between emission and cathode layer 1,3-bis(5-p-t-butylphenyl)-1,3,4-oxadiazol-2-yl)benzene (OXD7) or/and tris(8-hydroxyquinoline) aluminum ($Alq_3$) layers for increasing electroluminescent(EL) efficiency. This inserting effect has been observed and EL mechanism characteristics have been examined. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl)-1,1'-diphenyl-4,4'-diamine (TPD), and the host and guest materials of emission layer is $Alq_3$ and bis[1-methyl-3,3'-dimethyl-2-indorindiylmethyl] squaraine (Sq), respectively. For the inserting of $Alq_3$, emission efficiency increased. But we can not obtained highly pure red emission owing to the emission of inserting $Alq_3$ layer. The inserting of OXD7 makes hole block and accumulate. Because of increasing recombination probability of electron and hole, highly pure red color can be held. Simultaneously brightness characteristics and emission efficiency could improve.

  • PDF

Study on characteristics of Red OLED doped with rubrene (rubrene을 도핑한 Red OLED 특성 연구)

  • Lee, Jeong-Ho;Jeong, Ji-Hun;Kim, Yeong-Gwan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.02a
    • /
    • pp.166-167
    • /
    • 2005
  • The doping technique has been well known as method to get various emission color by choosing appropriate fluorescent dyes as a dopant. Usually, red emission of OLED device based on Alg$_{3}$ doped with DCM and rubrene is fabricated. Result that fabricate OLED device was manufactured by various doping density, we looked for the doping ratio of highest luminescent efficiency.

  • PDF

Luminescence Study of Eu3+ Ions Doped BaMoO4 Nanoparticles

  • Bharat, L. Krishna;Lee, Soo Hyun;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.415.2-415.2
    • /
    • 2014
  • Cost-effective, robust devices for solid-state lighting industry that converts electricity to light revolutionize the current lighting industry. Phosphor materials used in these devices should be synthesized in a low-cost and effective method for use in WLEDs. In this presentation, the synthesis of Eu3+ ions doped BaMoO4 phosphor samples by a facile synthesis process for red component of WLEDs will be shown. The tetragonal phase of the host lattice was substantiated by the X-ray diffraction patterns. The morphological studies were carried out by using a field-emission scanning electron microscope and transmission electron microscope. These confirmed the formation of a shuttle like particles with perpendicular protrusions in the middle of the particle. The photoluminescence (PL) properties exhibited good emission with a high asymmetry ratio when excited with ultraviolet B wavelengths (~ 280-315 nm). The cathodoluminescence (CL) spectra showed similar results to the PL spectra, indicating the rich red emission. The results suggest that this phosphor is a good material as red region component in the development of tri-band UV excitation based WLEDs.

  • PDF

Impact of Sintering Gas Pressure on Deep-red EuSi2O2N2 Phosphors

  • Deressa, Gemechu;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.22-25
    • /
    • 2020
  • Deep red EuSi2O2N2 phosphors were synthesized under various sintering gas pressures (1 atm, 2 atm, and 3 atm). They were in good agreement with the standard EuSi2O2N2 ICSD card # 41-6046 (a monoclinic crystal system with space group of P21/a). Their photoluminescence intensities were significantly increased with increasing the gas pressures. They showed a broad band emission peaking at 680 nm due to 4f65d1 - 4f7 of Eu2+ ion, which can be efficiently excited in the visible range up to 550 nm. The best one at 3 atm was applied for red LED based on blue chip, which showed the strong deep red emission.