• 제목/요약/키워드: Recycling substrate

검색결과 106건 처리시간 0.024초

버섯 수확 후 배지의 산업적 활용 (Industrial utilization of spent mushroom substrate)

  • 강희완
    • 한국버섯학회지
    • /
    • 제17권3호
    • /
    • pp.85-92
    • /
    • 2019
  • Over a million tons of spent mushroom substrate (SMS) are generated as by-products of mushroom cultivation every year in Korea. Disposal of SMS by mushroom farmers is difficult, therefore, recycling solutions that do not harm the environment are necessary. SMS consists of mushroom mycelia and residues of fruiting bodies, containing a variety of bioactive substances, such as extracellular enzymes, antimicrobial compounds, and secondary metabolites. This paper reviews utility of SMS for bioremediation, controlling plant disease, and production of lignocellulytic enzymes, organic fertilizer, and animal feed.

유출수 반송이 UASB 반응조 운전효율에 미치는 영향 (Effects of effluent recycling on the operating performance of UASB reactor)

  • 이헌모;양병수
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.299-310
    • /
    • 1993
  • This study was aimed to evaluate the effects of effluent recycling on the UASB reactor performances at the various organic loading rates and influent substrate concentrations. The organic removal efficiency of the reactors operated with effluent recycle were above 85%. However, the efficiencies of the reactors operated without the recycle were below 40% even though the effort to increase the efficiencies was made by changing the influent substrate concentrations and the organic loading rates, and introducing the effluent recycle at the final stage of the experiment. It was realized that the certain amount of effluent recycling from the start-up stage in UASB reactors seemed to be necessary to provide the effective contact chances between the substrate and granular sludge for better performances of the UASB process.

  • PDF

토마토 폐배지를 딸기 수경재배 배지로 재이용 가능성 연구 (A Study on the Possibility of Recycling Coir Organic Substrates for using Strawberry Hydroponics Media)

  • 이규빈;박영훈;최영환;손병구;김준엽;강남준;강점순
    • 한국폐기물자원순환학회지
    • /
    • 제34권2호
    • /
    • pp.205-213
    • /
    • 2017
  • The current study was performed to investigate the effect of recycling coir substrates on the growth, fruit yield, and quality of strawberry plants. Analysis of physical properties revealed that the pH of a fresh coir substrate was 5.04 while those of substrates reused for one and two years were 5.20 and 5.33, respectively. The electrical conductivity (EC) of a new substrate was as high as $4.58dS{\cdot}m^{-1}$. This can cause salt stress after transplanting. The EC tended to decrease as the substrate was recycled, and the EC of a two-year recycled substrate was $1.48dS{\cdot}m^{-1}$. The fresh substrate had lower nitrogen and calcium concentrations, but higher phosphate, potassium, and sodium concentrations than the recycled coir substrate. The coir substrates recycled for one or two years maintained better chemical properties for plant growth than the fresh substrate. Strawberry growth varied depending on the number of years that the coir substrate was recycled. In general, strawberries grown in substrates that had been reused for two years did better than those grown in substrates that had been reused once or were fresh. Ninety days after transplanting, a plant grown in a substrate that had been reused for two years contained 25 leaves, which was 3.6 more than with a fresh substrate. In addition, the plants grown in a substrate that had been reused for two years exhibited larger leaf areas than those grown in other substrates. Coir substrates that had been reused for one year increased the number and area of leaves, but not as much as the substrate that had been reused for two years. One- and two-year reused coir substrates increased the weight of strawberries produced relative to the unused substrate, but the difference was not statistically significant. The plants grown in two-year reused substrates were longer and wider, as well. Also, the number of fruits per plant was higher when substrates were reused. Specifically, the number of fruits per plant was 28.7 with a two-year reused substrate, but only 22.2 with a fresh substrate. The fruit color indices (as represented by their Hunter L, a, b values) were not considerably affected by recycling of the coir substrate. The Hunter L value, which indicates the brightness of the fruit, did not change significantly when the substrate was recycled. Neither Hunter a (red) nor b (yellow) values were changed by recycling. In addition, there were no significant changes in the hardnesses, acidities, or soluble solid-acid ratios of fruits grown in recycled substrates. Thus, it is thought that recycling the coir substrate does not affect measures of fruit quality such as color, hardness, and sugar content. Overall, reuse of coir substrates from hydroponic culture as high-bed strawberry growth substrates would solve the problems of new substrate costs and the disposal of substrates that had been used once.

Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure

  • Quan De;Shin Woonsup
    • 전기화학회지
    • /
    • 제7권2호
    • /
    • pp.83-88
    • /
    • 2004
  • [ $DeniLite^{TM}$ ] laccase immobilized Pt electrode was used for amperometric detection of some catechol derivatives and o-aminophenol (OAP) derivative by means of substrate recycling. In case of catechol derivatives, the obtained sensitivities are 85, 79 and $57 nA/{\mu}M$ with linear ranges of $0.6\~30,\;0.6\~30\;and\; 1\~25 {\mu}M$ and detection limits (S/N=3) of 0.2, 0.2 and $0.3{\mu}M$ for 3,4-dihydroxycinnaminic acid (3,4-DHCA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), respectively. In case of OAP derivative, the obtained sensitivity is $237 nA/{\mu}M$ with linear range of $0.2\~15{\mu}M$ and detection limit of 70 nM for 2-amino-4-chlorophenol (2-A-4-CP). The response time $(t_{90\%})$ is about 2 seconds for each substrate and the long-term stability is around 40-50days for catechol derivatives and 30 days for 2-A-4-CP with retaining $80\%$ of initial activity. The optimal pHs of the sensor for these substrates are in the range of 4.5-5.0, which indicates that stability of the enzymatically oxidized product plays a very important role in substrate recycling. The different sensitivity of the sensor for each substrate can be explained by the electronic effect of the sugstituent on the enzymatically oxidized form.

Amperometric Detection of Hydroquinone and Homogentisic Acid with Laccase Immobilized Platinum Electrode

  • Quan, De;Shin, Woon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권6호
    • /
    • pp.833-837
    • /
    • 2004
  • DeniLite$^{TM}$ laccase immobilized platinum electrode was used for amperometric detection of hydroquinone (HQ) and homogentisic acid (HGA) by means of substrate recycling. In case of HQ, the obtained sensitivity is 280 nA/ ${\mu}$M with linear range of 0.2-35 ${\mu}$M ($r^2$ = 0.998) and detection limit (S/N = 3) of 50 nM. This high sensitivity can be attributed to chemical amplification due to the cycling of the substrate caused by enzymatic oxidation and following electrochemical regeneration. In case of HGA, the obtained sensitivity is 53 nA/ ${\mu}$M with linear range of 1-50 $[\mu}M\;(r^2$ = 0.999) and detection limit of 0.3 ${\mu}$M. The response times ($t_{90%}$) are about 2 seconds for the two substrates and the long-term stability is 60 days for HQ and around 40-50 days for HGA with retaining 80% of initial activities. The very fast response and the durable long-term stability are the principal advantages of this sensor. pH studies show that optimal pH of the sensor for HQ is 6.0 and that for HGA is 4.5-5.0. This shift of optimal pH towards acidic range for HGA can be attributed to the balance between enzyme activity and accessibility of the substrate to the active site of the enzyme.

느타리버섯 폐배지에 대한 줄지렁이(Eisenia fetida) 개체군의 섭식률 및 생장률 (Feeding rate and growth rate of earthworm(Oligochaeta : Eisenia fetida) population on the spent substrate of the agaric-mushroom cultivation)

  • 배윤환;양용운
    • 유기물자원화
    • /
    • 제18권4호
    • /
    • pp.45-53
    • /
    • 2010
  • 여러 가지 방법으로 전처리된 느타리 버섯 폐배지에 대한 줄지렁이 개체군의 섭식률 및 생장률을 조사하였다. 갓 발생한 버섯폐배지의 부숙기간을 달리하여 지렁이에게 급이하였을 경우, 20일 이상 부숙된 버섯 폐배지보다 10일 이하로 부숙된 버섯 폐배지에 대한 지렁이 개체군의 섭식량 및 생장률이 높았다. 분변토를 첨가한 버섯폐배지나 질소영양원으로서 요소비료를 첨가하여 부숙한 버섯폐배지는 지렁이 개체군의 섭식률과 생장률을 증대시키지 못하는 것으로 나타났다. 그러나 버섯폐배지를 분쇄하여 공급하였을 경우에는 섭식량 및 생장률이 증가하였다. 특히 분쇄된 버섯폐배지에 미강을 첨가하였을 경우에는 분쇄하지 않은 단순 버섯폐배지보다 생장률이 1.85배 증가하였다.

Continuous Cultivation of Lactobacillus rhamnosus with Cell Recy-cling Using an Acoustic Cell Settler

  • Yang, Yun-Jeong;Hwang, Sung-Ho;Lee, Sang-Mok;Kim, Young-Jun;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권6호
    • /
    • pp.357-361
    • /
    • 2002
  • Continuous production of lactic acid from glucose by Lactobacillus rhamnosus with cell recycling using an acoustic cell settler was carried out. The performance of the system, such as the concentration of cell and product were compared with the control experiment without recycling. The acoustic settler showed cell separation efficiency of 67% during the continuous operation and the cell concentration in the fermentor with recycle exceeded that of the control by 29%. Com-pared with the control, tactic acid production was increased by 40%, while glucose consumption was only increased by 8%. The higher value of lactic acid production to substrate consumption (Yp/s, product yield coefficient) achieved by cell recycling is interpreted to indicate that the recycled cell mass consumes less substrate to produce the same amount of product than the control Within system environmental changes due to the longer mean cell residence time induced the cells maintaining the metabolic pathways to produce Less by-Product but more product, lactic acid.

Optimization of Food Waste Fermentation for Probiotic Feed Production with Yeast Kluyveromyces marxianus

  • Lee, Ki-Young;Yu, Sung-Jin;Yu, Seung-Yeng
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2001년도 정기총회 특별강연 및 춘계학술연구발표회(2)
    • /
    • pp.121-125
    • /
    • 2001
  • For the probiotic feed production, aerobic liquid fermentation of pulverized food wastes was attempted with a yeast Kluyveromyces marxianus. After grinding finely, optimal fermentation conditions of the substrate was investigated by shaking culture. The most active growth of the yeast was shown at solid content of 10%. The proper addition of urea(0.5g/l), o-phosphate(0.4g/l), molasses(4g/l), and yeast extract (1g/1) increased cell growth rate and viable cell count. For optimizing, the nutrients were all added to substrate and fermentation was carried in 2 litre jar fermenter. For the stimulation of hydrolyzing enzyme excretion, mixed culture with Aspersillus oryzae was also conducted. In 12 hours of fermentation, viable cell count of the yeast Kluyveromyces marxianus amounted to the number of 1.4 $\times$10$^{10}$ /1 in the culture medium.

  • PDF

HE-CVD법에 의한 Diamond/WC-Co 박막합성 (The Synthesis of Diamond/WC-Co Thin Film by HE-CVD)

  • 이기선;서성만;신동욱;김동선
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2003년도 추계정기총회 및 국제심포지엄
    • /
    • pp.185-189
    • /
    • 2003
  • The effect of surface roughness of the substrate on HF-CVD diamond coating was researched. The surface roughness was changed variously by electro-chemical etching conditions. The etching process acted to remove the metallic cobalt from the WC-Co. Diamond nucleation density was higher in etched the substrate. Therefore, the etching process was effective in both Co-removal and higher surface roughness, leading to the improving the diamond nucleation and deposition.

  • PDF

하수슬러지 혐기성 소화 효율 향상을 위한 열가수분해-고액분리 결합 공정 (Enhancement of anaerobic digestion of sewage sludge by combined process with thermal hydrolysis and separation)

  • 이시영;한인섭
    • 유기물자원화
    • /
    • 제29권4호
    • /
    • pp.99-106
    • /
    • 2021
  • 본 연구는 혐기성 소화의 전처리로써 열가수분해와 고액분리가 결합된 공정의 성능을 평가하였다. 탈수케이크는 열가수분해를 통해 가용화되며, 이후 고액분리를 수행한다. 고액 분리된 액상은 혐기성 소화에 기질로써 이용되고 고형물은 열가수분해로 회수된다. 열가수분해의 가용화율(COD 기준)은 45.1-49.3%이며 고액분리와 결합한 공정은 76.1-77.6%로 나타났다. Dual-pool two-step model을 통해 도출된 메탄 발생 특성을 살펴보면 고액 분리된 액상의 전체 분해 가능한 물질 중 분해가 빠른 물질의 비(a)는 0.891-0.911로 열가수분해된 시료에 비해 높게 나타났다. 반면에 분해가 빠른 물질의 반응 속도(kF)는 유사하게 나타났다. 이를 통해 열가수분해와 고액분리가 결합한 공정은 열가수분해를 통해 분해가 빠른 물질을 생성하고, 고액분리를 통해 선별하는 것으로 나타났다.