• Title/Summary/Keyword: Recycling of Resources Due

Search Result 405, Processing Time 0.023 seconds

Characteristics of Fatty Acid Composition and Properties by Blending of Vegetable Oils (식물성 기름의 혼합을 통한 지방산 조성 및 이화학적 특성 변화)

  • Lee, Tae Sung;Lee, Yong Hwa;Kim, Kwang Soo;Kim, Wook;Kim, Kwan Su;Jang, Young Seok;Park, Kwang Geun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.5
    • /
    • pp.624-632
    • /
    • 2012
  • As there have been lately many worldwide resource challenges such as potential exhaustion of fossil fuels, sudden rise of oil price and ever-rising grain pricing due to global food crisis, there have been more interests focused on recycling vegetable oils and fats into clean natural fuel and producing new resources based on waste cooking oil as a part of reusing waste resources. An Experiment was performed by using ratio of 50:50, 75:25 (w/w) mixture of based rapeseed oil, camellia oil, and olive oil. 50:50, 25:75 (w/w) mixture of based palm oil. The result was that the oleic acid ($C_{18:1}$) got the lowest percentage of 42.8%, when we combined the mixture of rapeseed oil and soybean oil. While the highest percentage of 72.1% was when the mixture of camellia oil and rapeseed oil were combined at 50:50 ratio. In 75:25 (w/w) case, mixture of rapeseed oil and soybean oil got the lowest. The highest ratio was the mixture of camellia oil and olive oil. Based on the component of palm oil, the total saturated fatty acid was decreased. It is expected that stabilizing oxidation through controlling of fatty acid after mixture and that liquidity at a low temperature. The acid value indicated that stabilizing oxidation got a range of highest to lowest. Camellia oil ranked as the highest, followed by olive oil, and the oil seeds as the lowest in rank. Controlling iodine value through mixture and improvement of stabilizing oxidation will provide a good quality. The quality of color has no significant change about mixture in ratio and maintenance. The reduction of the cost of refining process is expected by controling of mixture ratio at biodiesel production in the future.

A Study on the Reinforcement Effect Analysis of Aging Reservoir using Grout Material recycled Power Plant Byproduct (발전부산물을 재활용한 그라우트재의 노후 저수지 보강효과 분석에 관한 연구)

  • Seo, Se-Gwan;An, Jong-Hwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.23-33
    • /
    • 2021
  • In Korea, many reservoirs have been built for the purpose of solving the food shortage problem and supplying agricultural water. However, the current 75.6% of the reservoirs are in serious aged as more than 50 years have passed since the year of construction. In the case of such an aging reservoir, the stability due to scour and erosion inside the reservoir is very reduced, and if concentrated rainfall due to recent abnormal weather occurs, the aging reservoir may collapse, leading to a lot of damage to property and human life. Accordingly, each agency that manages aging reservoirs uses Ordinary Portland Cement (OPC) as an injection material and applies the grouting method. However, in the case of OPC, it may deteriorate over time and water leakage may occur again. And there are environmental problems such as consumption of natural resources and generation of greenhouse gases. So, there is a need to develop new materials and methods that can replace the OPC. In this study, an laboratory test and analysis were performed on the grout material developed to induce a curing reaction similar to that of OPC by recycling power plant byproduct. In addition, test in the field such as electric resistivity survey, Standard Penetration Test (SPT), and field permeability test were performed to analyzed to reinforcement effect and determine the possibility of using instead of OPC. As a results of the test, in the case of recycled power plant byproduct, the compressive strength was 2.9 to 3.2 times and the deformation modulus was 2.3 to 3.3 times higher, indicating that it is excellent in strength and can be used instead of OPC. And it was analyzed that the N value of the reservoir was increased by 1~2, and the coefficient of permeability (k) decreased to the level of 8.9~42.5%. showing sufficient reinforcing effect in terms of order.

Nutrient production from dairy cattle manure and loading on arable land

  • Won, Seunggun;Shim, Soo-Min;You, Byung-Gu;Choi, Yoon-Seok;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.125-132
    • /
    • 2017
  • Objective: Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods: Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (${\Delta}P=0$). Results: The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion: As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

The Fundamental Study on Properties of Concrete Using the Garnet with Industrial Wastes (산업부산물인 가네트를 이용한 콘크리트의 성질개선에 관한 기초적 연구)

  • Lim, Byoung-Ho;Park, Jung-Min;Kim, Tae-Gon;Kim, Wha-Jung
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.183-190
    • /
    • 1999
  • This paper investigated the possibility of appling to concrete through fundamental experiment for garnet, which was industrial wastes generated in kyung pook region, in aspects of development of new materials and recycling of industrial wastes due to shortage of natural resources. Consequently, garnet powder showed the possibility of admixture as showed in the chemical composition because the content of silica and alumina in relation to pozzolanic activity was about 50%. The time of setting was more or less diminished as the increasing of replacement ratio of garnet. In flow test, flow values tended to increase to some degree as the increasing of replacement ratio of garnet. Therefore, application of garnet was expected to improve the workability of concrete. The compressive strength of mortar replaced by garnet was respectively increased as compared with plain mortar and the maximum strength was showed in replaced by 10%, however a little different to the change of W/B ratio. Also, the possibility of admixture to reduce the amount of cement and to improve the property of concrete was showed as the strength of mortar replaced by garnet was comparable to that by existing admixture(silica fume, fly-ash).

Effect of Ozone Concentration on AOP Efficiency of Secondary Effluent from Pig Slurry Purification System (오존 접촉농도가 양돈슬러리 2차 처리수의 고도처리 효율에 미치는 영향)

  • Jeong, K.H.;Jeon, S.K.;Ryu, S.H.;Kim, J.H.;Kwag, J.H.;Ann, H.K.;Jeong, M.S.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • With an increasing livestock population, animal manure production has been steadily increasing in Korea. This trend has forced farmers to spend more money for animal manure treatment in their farm. Therefore, research utilizing animal manure as a renewable resources has become increasingly important. The purpose of this study was to develop a stable advanced wastewater treatment system can be applied to conventional animal wastewater treatment processes and evaluate its contribution to reduce effluent discharge volume by recycling as flushing water. AOP (advanced oxidation process) process improved wastewater treatment efficiency in terms of color, suspended solids (SS) and chemical oxygen demand (COD). Due to the addition of Hydrogen peroxide ($H_2O_2$), pathogens, Salmonella and E. coli, reduction was accomplished. To enhance ozone treatment effect, three levels of ozone test on secondary effluent of pig slurry purification system were conducted. At the level of 5 g/hr, 6.7 g/hr and 8.4 g/hr color of secondary effluent of pig slurry purification system were decreased from 2,433 to 2,199, 2,433 to 1,980 and 2,433 to 243, respectively.

A Study on the Story Increase for Securing the Feasibility of Aged-Housing Remodeling (노후공동주택 리모델링의 사업성 확보를 위한 수직증축 제안)

  • Han, Ju-Yeon;Shin, Dong-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.3
    • /
    • pp.152-159
    • /
    • 2012
  • Remodeling the existing building structure by recycling has great advantages compared with reconstruction in terms of environmentally contributions and reduced use of national resources. And no matter the existing floor area ratio, extension up to 30% of the exclusive using area and short project period have made remodeling a good alternative to reconstruction. However, the residents of aged housings that were being remodeled are either abandoning the remodeling project and turning to reconstruction. The main reason is remodeling project cannot increase the number of householders. In principal, it is prohibited to increase the number of floors during remodeling due to matters of safety. That is, all remodeling construction costs are borne by the residents, which leads to great financial pressure. Therefore, in order to improve these conditions, the residents' burden of remodeling charges should be reduced, and one of the ways to do so is to increase the number of householders. In this study, there will be suggestions of alternatives, including the story increase during remodeling, and compare the burden of remodeling charges on each of the residents, between proposed alternatives and the current remodeling plans by calculating the construction costs in order to prepare a foundation for a system that will promote remodeling.

A Study on the Utilization Method in the SCW Method using Supplementary Cementitious Materials (시멘트 대체재료를 활용한 SCW공법에서의 활용 방안에 대한 연구)

  • Kwang-Wu Lee;Jae-Hyun Park;Young-Won Lee;Dae-Sung Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.87-95
    • /
    • 2023
  • Recently, redevelopment of the original downtown area is underway, the necessity of construction in adjacent location is increasing. However, excavations in dense urban areas are prone to ground problems due to various causes, so it is necessary to use materials and methods that can minimize such problems. As a general earth retaining method, various methods such as diaphragm wall and CIP method are applied using cement. However, since a large amount of cement is used for the installation of earth retaining method, it is necessary to conduct research on the development of new cement substitute materials to significantly reduce greenhouse gas emissions. In this study, we utilized the hardening reaction of blast furnace slag powder, desulfurized gypsum and high calcium fly ash by alkali activation and applied it to the SCW method. As a result, it was analyzed that the compressive strength of solidified soil using development solidification material was 96.2 ~ 106.3% of OPC at 28 days of curing. In addition, the strength increment ratio was 2.06 for sandy soil and 2.41 for clayey soil, which was higher than 1.85 of OPC. It seems an advantageous in terms of long-term strength. In addition, from the environmental point of view, it was analyzed that there is no elution of heavy metals and that greenhouse gas emissions can be dramatically reduced. Therefore, if further studies are conducted, it can be applied to the SCW method.

Relationship between Unconfined Compressive Strength and Shear Wave Velocity of Cemented Sands (고결모래의 일축압축강도와 전단파속도의 상관관계)

  • Park, Sung-Sik;Hwang, Se-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.65-74
    • /
    • 2014
  • Cemented soils have been widely used in road and dam construction, and recently ground improvement of soft soils. The strength of such cemented soils can be tested by using cored sample or laboratory-prepared specimen through unconfined compression or triaxial tests. It takes time to core a sample or prepare a testing specimen in the laboratory. In a certain situation, it is necessary to determine the in-situ strength of cemented soils very quickly and on time. In this study, the relation between unconfined compressive strength and shear wave velocity was investigated for predicting the in-situ strength of cemented soils. A small cemented specimen with 5 cm in diameter and 10 cm in height was prepared by Nakdong river sand and ordinary Portland cement. Its cement ratios were 4, 8, 12, and 16% and air cured for 7, 14, and 28 days. For recycling of resources, a blast furnace slag was also used with sodium hydroxide as an alkaline activator. The shear wave velocity for cemented soils was measured and then unconfined compressive strength test was carried out. As a cement ratio increased, the shear wave velocity and unconfined compressive strength increased due to increased density and denser structure. The relation between unconfined compressive strength and shear wave velocity increased nonlinearly for cemented soils with less than 16% of cement ratio.

Material Characteristic of POFA Concrete and Its Application to Corrosion Resistance Evaluation (POFA 콘크리트의 재료특성 및 부식 저항성 평가로의 적용)

  • Lee, Chang-Hong;Song, Ha-Won;Ann, Ki-Yong;Ismail, Mohamed Abdel
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.565-572
    • /
    • 2009
  • In this study, corrosion resistance of palm oil fuel ash (POFA) concrete as a blended concrete is evaluated by using electrochemical technique. The POFA is an industrial byproduct obtained from fuel ash after extracting palm oil from palm-tree. In order to obtain basic material characteristics of the POFA concrete, tests on compressive strength, slump, weight loss, bleeding and expansion ratio were carried out the early-aged POFA concrete. On the other hand, durability characteristics, both chloride penetration and carbonation depth test, were also conducted. Finally, corrosion resistance were evaluated by applying electro-chemical artificial crack healing technique, and the tests on the impressed voltage characteristic, galvanic current and linear polarization resistance. From the experimental results, it was found that long-term strength, bleeding, lower slump ratio, expansion ratio, chloride penetration, carbonation and corrosion resistance were improved by using the POFA due to activated pozzolanic reaction. It can be also mentioned that POFA concrete has a potential to be used as a cementitious binder for green-recycling resources.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.