• Title/Summary/Keyword: Recycling of Resources

Search Result 3,500, Processing Time 0.028 seconds

Effects of Magnetite(Fe3O4) as Electrical Conductor of Direct Interspecies Electron Transfer on Methane Yield of Food Wastewater (종간직접전자전달 전도체로서 Magnetite(Fe3O4)가 음폐수의 메탄생산에 미치는 영향)

  • Jun-Hyeong Lee;Tae-Bong Kim;Chang-Hyun Kim;Young-Man Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • Methane production by anaerobic digestion occurs through interspecies electron transfer (DIET), a synthetic metabolism between acetic and methanate bacteria through hydrolysis and acid production steps. In this study, to improve methane yield, the effect of addition of magnetite (Fe3O4), a conductor promoting DIET on methane production in food wastewater was investigated, and the effect on methane yield was assessed by methane potential (Bu) and maximum methane production rate [Rm(t0)] by the operation of batch type anaerobic reactor adding Fe3O4. The Bu and Rm(t0) of food wastewater without Fe3O4 were 0.496 Nm3/kg-VSadded and 38.24 mL/day, respectively. The t0 which reached to Rm appeared at 21.06 days during the operation of the anaerobic reactor. The Bu of food wastewater with Fe3O4 was 0.502, 0.498, 0.512, 0.510, 0.518, 0.523, 0.524, 0.540, and 0.549 Nm3/kg-VSadded in the treatment of 5, 10, 15, 20, 25, 30, 40, 70, and 100mM-Fe3O4, respectively, and the Bu significantly increased to 36.95% with the addition of magnetite in the addition of 15mM-Fe3O4. And, the addition of Fe3O4 shortened the duration to reach Rm from 21.06 days to the maximum of 14.67 days by the addition of Fe3O4. Therefore, the methane yield and production rate of food wastewater significantly improved with the addition of Fe3O4.

Study of the Sludge Formation Mechanism in Advanced Packaging Process and Prevention Method for the Sludge (어드밴스드 패키징 공정에서 발생할 수 있는 슬러지의 인자 확인 및 형성 방지법의 제안)

  • Jiwon Kim;Suk Jekal;Ha-Yeong Kim;Min Sang Kim;Dong Hyun Kim;Chan-Gyo Kim;Yeon-Ryong Chu;Neunghi Lee;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • In this study, the sludge formation in the wastewater drain from the advanced packaging process mechanisms are revealed as well as the key factors, materials, and sludge prevention methods using surfactant. Compared with that of conventional packaging process, advanced packaging process employ similar process to the semiconductor fabrication process, and thus many processes may generate wastewater. In specific, a large amount of wastewater may generate during the carrier wafer bonding, photo, development, and carrier wafer debonding processes. In order to identify the key factors for the formation of sludge during the advanced packaging process, six types of chemicals including bonding glue, HMDS, photoresist (PR), PR developer, debonding cleaner, and water are utilized and mixing evaluation is assessed. As a result, it is confirmed that the black solid sludge is formed, which is originated by the sludge seed formation by hydrolysis/dehydration reaction of HMDS and sludge growth via hydrophobic-hydrophobic binding with sludge seed and PR. For the sludge prevention investigation, three surfactants of CTAB, PEG, and shampoo are mixed with the key materials of sludge, and it is confirmed that the sludge formations are successfully suppressed. The underlying mechanism behind the sludge formation is that the carbon tails of the surfactant bind to PR with hydrophobic-hydrophobic interaction and inhibit the reaction with HMDS-based slurry seeds to prevent the sludge formation. In this regard, it is expected that various problems like clogging in drains and pipes during the advanced packaging process may effectively solve by the injection of surfactants into the drains.

A Study on Medical Waste Generation Analysis during Outbreak of Massive Infectious Diseases (대규모 감염병 발병에 따른 의료폐기물 발생량 예측에 관한 연구)

  • Sang-Min Kim;Jin-Kyu Park;In-Beom Ko;Byung-Sun Lee;Sang-Ryong Shin;Nam-Hoon Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.29-39
    • /
    • 2023
  • In this study, an analysis of medical waste generation characteristics was conducted, differentiating between ordinary situation and the outbreaks of massive infectious diseases. During ordinary situation, prediction models for medical waste quantities by type, general medical waste(G-MW), hazardous medical waste(H-MW), infectious medical waste(I-MW), were established through regression analysis, with all significance values (p) being <0.0001, indicating statistical significance. The determination coefficient(R2) values for prediction models of each category were analyzed as follows : I-MW(R2=0.9943) > G-MW(R2=0.9817) > H-MW(R2=0.9310). Additionally, factors such as GDP(G-MW), the number of medical institutions (H-MW), and the elderly population ratio(I-MW), utilized as influencing factors and consistent with previous literature, showed high correlations. The total MW generation, evaluated by combining each model, had an MAE of 2,615 and RMSE of 3,353. This indicated accuracy levels similar to the medical waste models of H-MW(2,491, 2,890) and I-MW(2,291, 3,267). Due to limitations in accurately estimating the quantity of medical waste during the rapid and outbreaks of massive infectious diseases, the generation unit of I-MW was derived to analyze its characteristics. During the early unstable stage of infectious disease outbreaks, the generation unit was 8.74 kg/capita·day, 2.69 kg/capita·day during the stable stage, and an average of 0.08 kg/capita·day during the reduction stage. Correlation analysis between generation unit of I-MW and lethality rates showed +0.99 in the unstable stage, +0.52 in the stable stage, and +0.96 in the reduction period, demonstrating a very high positive correlation of +0.95 or higher throughout the entire outbreaks of massive infectious diseases. The results derived from this study are expected to play a useful role in establishing an effective medical waste management system in the field of health care.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(II): - Results of the Precision Monitoring - (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(II) - 정밀모니터링 결과 중심으로 -)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.91-98
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. 9 anaerobic digestion facilities which is normally operated during the field survey and 14 livestock manure farms were selected for precision investigation. the physicochemical analysis was performed on the moisture and organic contents, nutrients composition (carbohydrate, fat, protein), volatile fatty acids (VFAs), and nitrogen, etc. Volatile solids (VS) of organic wastes brought into the bio-gasification facilities were 2.81 % (animal manure only) and 5.92 % (animal manure+food waste), respectively. Total solids (TS) reults of samples from livestock farms were 5.6 % in piglets and 11~13 % in other kinds of breeding pigs. The actual methane yield based on nutrients contents was estimated to $0.36Sm^3CH_4/kgVS$ which is equivalent to 72 % of theoretical methane yield value. The optimum mixing ratio depending on the effect of the combined bio-gasification was obtained through the continuous stirred-tank reactor (CSTR) which is operated at different mixing ratio of swine manure and food waste leachate. The range of swine manure and food waste leachate from 60:40 to 40:60 were adequate to the appropriate conditions of anaerobic digestion; less than 100 gTS/, more than alkalinity of 1 gCaCO3/L, C/N ratio 12.0~30.0, etc.

Effect on Digestion Efficiency by Adding Microbial Agent in Mesophilic Two-stage Anaerobic Digester (중온2단혐기성소화조에 미생물제재 주입시 소화효율에 미치는 영향)

  • Jung, Byung-Gil;Kim, Seok-Soon;Kang, Dong-Hyo;Sung, Nak-Chang;Choi, Seung-Ho;Lee, Hee-Pom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.75-86
    • /
    • 2003
  • In the near future, the capacity of conventional anaerobic digester is thought to be insufficient because of the increase of the total solids from expansion of intercepting sewer, sewage quantity and direct input of night soil from near apartment districts. The objectives of this study was to investigate the improvement of digestion efficiency using microbial agent(Bio-dh). The system was a pilot-scale, two-staged, anaerobic sludge digestion system. The first-stage digester was heated and mixed. The agitation velocity of the first-stage digester was 120rpm. The second-stage digester was neither heated nor mixed. The Digestion temperature was kept at $35{\pm}1^{\circ}C$ The detention time of digester was 19 days. The dosage of sewage sludge and microbial agent were $0.65m^3/day$ and $0.5{\ell}/day$, respectively. The experiments was run for 25days. Three times a week, $COD_{Mn}$ and SS of effluent, TS, VS, and biogas production rate were measured. Temperature, pH, and alkalinity were measured daily. The results were as follows ; Without microbial agent, digestion efficiencies ranged 46.0%~50.9%(mean=48.6%), with microbial agent(Bio-dh), digestion efficiencies ranged 52.8%~57.3%(mean=54.2%). Consequently, microbial agent(Bio-dh) increased the sludge digestion efficiency about 12%. Also, Without microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 1,639mg/L, 4,888mg/L respectively. With microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 859mg/L, 2,405mg/L respectively. Consequently, microbial agent(Bio-dh) increased the removal efficiency of $COD_{Mn}$ and SS about 47.6% and 50.8%, respectively.

  • PDF

Furrow Covering Effects with Rice Straw on Nutrient Discharge from Upland Soil Used for Red Pepper Cultivation (고추밭 고랑 볏짚피복에 의한 양분유출 특성)

  • Hong, Seung-Chang;Kim, Min-Kyeong;Jung, Goo-Buk;So, Kyu-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Excessive application of nutrient supplement on the upland soil may increase the amount of discharge to surrounding water systems. The chemical fertilizer (CF), cow manure compost (CMC), and pig manure compost (PMC) are used as a nutrient supplement for cultivation of red pepper. Rice straws are widely used as a soil covering material in order to reduce weed occurrence, to protect soil moisture, and to supply organic matter in upland soil. This study was conducted to evaluate the furrow covering effect with rice straw on nutrient discharge in upland soil used for red pepper cultivation. The experimental plots of nutrient supplement were consisted of CF, CMC, and PMC and the amount of nutrient application were as recommended amount after soil test for red pepper cultivation. Each nutrient supplement treatment plot has no furrow covering (CFC) as a control and furrow covering with rice straw (FCS), respectively. Furrow covering with rice straw (FCS) of CF treatment and CMC treatment reduced the amount of T-N(total nitrogen) discharge by $1.4kg\;ha^{-1}$, $2.1kg\;ha^{-1}$, respectively, compared to control. While the amount of T-P(total phosphorus) discharge of the furrow covering with rice straw of CF, CMC, and PMC increased by $2.1kg\;ha^{-1}$, $2.1kg\;ha^{-1}$, and $0.2kg\;ha^{-1}$, respectively, compared to control. The phosphorus and nitrogen content of straw were 0.4 % and 0.3 % respectively. In addition, in three week the phosphorus was eluted from the straw which soaked in distilled water. Thus, it was assumed that T-P discharging originated from rice straw which applied as a furrow covering material. The furrow covering with rice straw reduced weed occurrence compared to control. But production of fresh red pepper was not influenced significantly by furrow covering with rice straw. In conclusion, excessive furrow covering with rice straw could induce T-P discharge from upland soil used for red pepper cultivation. Further studies are needed to evaluate the appropriate amount of rice straw as a furrow covering material.

Effective correlation between coagulation efficiency and the sludge settling characteristic (슬러지 응집효율이 침강특성에 미치는 상관관계에 대한 연구)

  • Han, Gee-Bong;Yoon, Ji-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.151-159
    • /
    • 2006
  • In these days, the importance of sludge treatment is emerging due to the London Convention, so this study was conducted to propose the alternatives for the improved sludge treatment on the organic wastewater and sewage sludge with JAR test and settling column equipped with stirrer. The minimum coagulant dosage to earn the optimum sludge settling efficiency resulted from 200mg/l and each critical sludge settling interface showed no distinct difference when PAC was dosed over 200mg/l. Accordingly, Clarification Rate(CR) with 200mg/l dosage was calculated to CR=(Ho-Ht) / Ho=1-0.4=0.6 because the critical sludge settling height stopped at 0.4. The settling velocity of sludge interface was decreased with the increase of MLSS concentration but rather increased with MLSS concentration over 1,000mg/l. This resulted from positive effect of interacted coagulation for floc formation by transfer to the zone of compressed settling when MLSS concentration increased over 1,000mg/l. The settling velocity of sludge interface showed $28.66{\times}10^{-3}/min$ for average settling velocity of sewage sludge which is 6.7 times higher than $4.25{\times}10^{-3}/min$ for average settling velocity of organic wastewater sludge. The increasing rate of CR for organic wastewater activated sludge was higher than that of settling velocity under 200mg/l of PAC dosage but settling velocity was higher than CR over 200mg/l of PAC dosage. However, in case of sewage sludge, the differential rate of CR was low when PAC dosage was increased but the settling velocity was suddenly increased with over 200mg/l dosage. Therefore coagulation effect was more efficient to MLSS settling velocity rather than SS removal effect in the supernatant.

  • PDF

Effects of Feeding Dried Leftover Food on Productivity of Growing and Finishing Pigs (건조 남은음식물 급여가 육성돈과 비육돈의 생산성에 미치는 효과)

  • Cho, Y.M.;Kim, K.H.;Koh, H.B.;Chung, I.B.;Lee, G.W.;Bae, I.H.;Yang, C.J.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.2
    • /
    • pp.61-71
    • /
    • 2004
  • These studies were conducted to investigate the effects of feeding dried leftover food (DLF) on growth, feed conversion and carcass characteristics of growing and finishing pigs. In experiment 1, seventy-five three-way cross-hybrids ($Yorkshire{\times}Landrace{\times}Duroc$) pigs weighing approximately 22 kg of body weight on average were assigned to five treatments in a completely randomized design. Each treatment had three replications with five pigs per replication. All pigs were fed experimental diets for 60 days. In experiment 2, seventy-five three-way cross-hybrids pigs weighing approximately 70 kg of body weight were fed experimental diets for 49 days. Each treatment had three replications with five pigs per replication. The treatments included 1) group offered control diet without DLF, 2) group offered diet containing DLF at 25%, 3) group offered diet containing DLF at 50%, 4) group offerred diet containing DLF at 25% with 10% higher protein level and 5) group offerred diet containing DLF at 50% and 20% higher protein level. Average daily gain of growing pigs was highest in control group among all the treatment groups except group offered diet containing DLF at 25% with no significant difference (P>0.05). Feed intake of DLF-offered groups were lower than that of control group while feed intake of groups fed diets containing DLF at 50% with 20% higher protein level was significantly higher (P<0.05) than that of control group. Feed conversion of growing pigs was not significantly different amont treatments although it seemed to be slightly improved in groups fed diets containing DLF at 25%. Average daily gain of finishing pigs fed diets containing DLF was significantly lower than that of control group. However there was no significant differences in average daily gain between groups fed diets containing DLF at 25% with 10% higher protein level and control group (P>0.05). Feed intakes were significantly decreased in DLF-fed groups compared to control group while there was no significant differences in feed intake between groups fed diets containing DLF with 10% and 20% higher protein levels and control group (P>0.05). Feed conversion was lowest in groups fed diets containing DLF at 25% with 10% higher protein level. However, there were no significant differences in feed conversion between groups fed diets containing DLF at 25% with 10% higher protein level and control group. Feed conversion of groups fed diets containing DLF at 50% was significantly higher than that of control group (P<0.05). Carcass weight was decreased with increasing levels of DLF in the diets. There were no significant differences in dressing percentage, backfat thickness and carcass grade among treatments. Feed cost per 1 kg body weight gain of finishing pigs was lowest in groups fed diets containing DLF at 25% with 10% higher protein level.

  • PDF

Remediation of Soil Contaminated by Chlorinated Ethylene Using Combined Application of Two Different Dechlorinating Microbial Cultures and Iron Powder (두 종류의 탈염소화미생물 배양액과 철분 첨가에 의한 염화에틸렌 오염토양 복원)

  • Lee, Tae-Ho;Kim, Hyeong-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.55-65
    • /
    • 2003
  • The combined effect of bioaugmentation of dechlorinating bacterial cultures and addition of iron powder($Fe^0$ on reductive dechlorination of tetrachloroethylene(PCE) and other chlorinated ethylenes in a artificially contaminated soil slurry(60micromoles PCE/kg soil). Two different anaerobic bacterial cultures, a pure bacterial culture of Desulfitobacterium sp. strain Y-51 capable of dechlorinating PCE to cis-1,2-dechloroethylene(cis-DCE) and the other enrichment culture PE-1 capable of dechlorinating PCE completely to ethylene, were used for the bioaugmentation test. Both treatments introduced with the strain Y-51 and PE-1 culture (3mg dry cell weight/kg soil) showed conversion of PCE to cis-DCE within 40days. The treatments added with $Fe^0$(0.1-1.0%) alone to the soil slurry resulted in extended PCE dechlorination to ethylene and ethane and the dechlorination rate depended on the amount of $Fe^0$ added. The combined use of the bacterial cultures with $Fe^0$(0.1-1.0%)) showed the higher PCE dechlorination rate than the separated application and the pattern of PCE dechlorination and end-product formation was different from those of the separated application. When 0.1% of $Fe^0$ was added with the cultures, the treatments with the strain Y-51 and $Fe^0$ resulted in cis-DCE accumulation from PCE dechlorination, but the treatment with the enrichment culture and $Fe^0$ showed the more extended dechlorination via cis-DCE. These results suggested that the combined application of and the bactrial culture, specially the complete dechlorinating enrichment culture, is practically effective for bioremediation of PCE contaminated soil.

  • PDF

Changes of the Substances during Composting of Seafood Processing Wastewater Sludge (수산가공폐수슬러지의 퇴비화과정중 물질변화)

  • Lee, Hong-Jae;Back, Song-Bum;Kim, Woo-Seong;Park, Hyun-Geoun;Heo, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.55-69
    • /
    • 2001
  • To study the possibility of agricultural utilization of seafood processing wastewater sludges, the changes of temperature and humus, the form of organic matter and nitrogen and the germination ratio of plant during the composting were investigated. The results were summarized as follows. Temperature was rapidly increased at early stage of composting, reached to $67{\sim}76^{\circ}C$ in highest temperature at 3~5 days, and then decreased gradually fallen to $40{\sim}50^{\circ}C$ at 19 days after composting, at the point was upset firstly. The third upset was conducted at 60days after composting, and then the temperature was little changed. The contents of total organic matters in the compost for composting were down 4.5~8.0%. Ether extractable materials, resins and hemicellulose contents of the organic matters for composting were decreased with 35~77%, 32~69% and 19~30%, respectively. And cellulose, lignins and unknown materials contents in the organic matters for composting were increased a little, but water soluble polysaccharides of organic matters were little changed. Total nitrogen, amino sugar and amino acid nitrogen contents in the compost for composting were decreased with 20~42%, 11~49% and 23~65%, respectively. The contents of humic acid in the compost for composting were little changed, but contents of fulvic acid in the compost for composting were decreased gradually. Germination ratio of radish, chinese cabbage and cucumber were over 90%, when the compost produced at 30 days after composting was tested on plant germination.

  • PDF