• Title/Summary/Keyword: Recycling Water

Search Result 1,069, Processing Time 0.032 seconds

Forward Osmotic Pressure-Free (△𝜋≤0) Reverse Osmosis and Osmotic Pressure Approximation of Concentrated NaCl Solutions (정삼투-무삼투압차(△𝜋≤0) 법 역삼투 해수 담수화 및 고농도 NaCl 용액의 삼투압 근사식)

  • Chang, Ho Nam;Choi, Kyung-Rok;Jung, Kwonsu;Park, Gwon Woo;Kim, Yeu-Chun;Suh, Charles;Kim, Nakjong;Kim, Do Hyun;Kim, Beom Su;Kim, Han Min;Chang, Yoon-Seok;Kim, Nam Uk;Kim, In Ho;Kim, Kunwoo;Lee, Habit;Qiang, Fei
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.235-252
    • /
    • 2022
  • Forward osmotic pressure-free reverse osmosis (Δ𝜋=0 RO) was invented in 2013. The first patent (US 9,950,297 B2) was registered on April 18, 2018. The "Osmotic Pressure of Concentrated Solutions" in JACS (1908) by G.N. Lewis of MIT was used for the estimation. The Chang's RO system differs from conventional RO (C-RO) in that two-chamber system of osmotic pressure equalizer and a low-pressure RO system while C-RO is based on a single chamber. Chang claimed that all aqueous solutions, including salt water, regardless of its osmotic pressure can be separated into water and salt. The second patent (US 10.953.367B2, March 23, 2021) showed that a low-pressure reverse osmosis is possible for 3.0% input at Δ𝜋 of 10 to 12 bar. Singularity ZERO reverse osmosis from his third patent (Korea patent 10-22322755, US-PCT/KR202003595) for a 3.0% NaCl input, 50% more water recovery, use of 1/3 RO membrane area, and 1/5th of theoretical energy. These numbers come from Chang's laboratory experiments and theoretical analysis. Relative residence time (RRT) of feed and OE chambers makes Δ𝜋 to zero or negative by recycling enriched feed flow. The construction cost by S-ZERO was estimated to be around 50~60% of the current RO system.

Effect of Eddy on the Cycle of 210Po and 234 in the central Region of Korean East Sea (동해 중부해역에서 210Po과 234Th의 순환에 대한 소용돌이의 영향)

  • YANG, HAN SOEB;KIM, SOUNG SOO;LEE, JAE CHUL
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.279-287
    • /
    • 1995
  • The vertical profiles of natural 210Pb, 210Po and 234Th activities were measured for the upper 100 m of water column at three stations in the middle region of the Korean East Sea during May 1992. And the distribution of these radionuclides was discussed associated with the formation of warm eddy or water mass. The main thermocline was maintained between the depth of 50 and 100 m at the southern station (Sta. A1), and between the depth of 10 to 50 m at the coastal station of Sockcho (Sta. B10). Contrastingly, a main thermocline at Sta. A10, which locates near the center of warm eddy, was observed below 230 m depth. Between 50 and 220 m depth of Sta. A10 is there a relatively homogeneous water mass of 10.1${\pm}$0.5$^{\circ}C$, which is significantly higher in temperature and lower in nutrient than the other two stations. It seems to be due to sinking of the warm surface water in which nutrients were completely consumed. Both 210Pb and 210Po show the highest concentration at Sta. A1 and the lowest at Sta. B10 among the three stations. Also, the 210Pb activity is generally higher in the upper layer than in the lower layer, while 210Po activity represents the reversed pattern at all three stations. At Sta. A1 and Sta. B10, the activities of 210Po relative to its parent 210Pb were deficient in the water column above the main thermocline, but were excess below the thermocline. However, the station near the center of warm eddy(Sta. A10), shows no excess of 210Po in the depths below 50 m, although its defficiency is found in the upper layer like the other stations. At Sta. A1 and b10. 234Th activities are slightly lower in the surface mixed layer than in the deeper region However, at Sta. A10, 234Th activity in the upper 30 m is higher than below 50 m or in the same depth of the other stations, probably because of the high concentration of particulate matter. The residence time of 210Po in the surface mixed layer at Sta. A10 is 0.4 year, much shorter than at the other two stations(about one year). Above 100 m depth, the residence times of 234Th range from 18 to 30 other two stations(about on year). Above 100 m depth, the residence times of 234Th range from 18 to 30 days at all stations, without significant regional variation. The percentages of recycled 210Po within the thermocline are 39% and 92% at Sta. A1 and Sta. B10, respectively. Much higher value at Sta. B10 may be due to a thin thickness of the mixed layer as well as the slower recycling rate of 210Po in the main thermocline.

  • PDF

A Study on Physical and Chemical Properties of Vegetation Foundation for Rooftop Greening Using Wood Waste (폐목질 자원을 이용한 옥상녹화용 식생기반재의 물리 및 화학적 특성에 관한 연구)

  • Kim, Dae-Young;Kim, Mi Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • Many researchers have studied on rooftop greening that can be installed in abandoned spaces on a building roof. The most important issue in rooftop greening is the soil weight problem. The light greening materials are needed to solve this problem. Therefore, many alternative materials against the soil were investigated for rooftop greening. In this study, the waste wood chips and the waste paper slurry were evaluated as the lightweight vegetation foundation for rooftop greening. It also has a meaning for recycling of waste materials. The mixture ratio of waste wood chips to waste paper slurry for the board (the foundation of greening) was 60 to 40. The wet strength resin and the sizing agent were additionally added with different amount. After the forming of the board, physical and chemical properties were tested with the variation of wet strength resin and sizing agent. As the result of the test, the board with 15% of wet strength resin in the wet condition showed the highest strength. Futhermore, the moisture evaporation loss from the board surface with sizing agent was much lower than that from the board without sizing agent. Therefore, it was clear that the sizing agent was effective for water retention. The change of thickness in the wet condition was less than 1 mm, and it showed that the board is the predominant material on the dimensional stability. The average pH value of the board was ranged from 7.6 to 8.25.

Mix Design and Characteristics of Compressive Strengths for Foam Concrete Associated with the Application of Bottom Ash (Bottom Ash를 사용한 기포콘크리트의 배합 설계 및 압축강도 특성)

  • Kim, Sang-Chel;Ahn, Sang-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.283-290
    • /
    • 2009
  • Differently from fly ash, the bottom ash produced from thermoelectric power plant has been treated as an industrial waste matter, and almost reclaimed a tract from the sea. If this waste material is applicable to foam concrete as an aggregate owing to its light-weight, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and horizontal forces and deformations of retaining wall subject to soil pressure. This study has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was measured in terms of unit weight of concrete, air content, water-cement ratio and compressive strength. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationships between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a mix design proportion of foam concrete while bottom ash is used as an aggregate of the concrete.

Fundamental Properties of Low Strength Concrete Mixture with Blast Furnace Slag and Sewage Sludge (고로슬래그미분말 및 하수슬러지를 활용한 저강도 콘크리트의 기초적 물성)

  • Kwon, Chil Woo;Lim, Nam Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.136-144
    • /
    • 2013
  • In this study, in order to establish a plan that will enable safe use of renewable resources such as diverse industrial by-products and urban recycled materials, we conducted experiments that focused on flow, bleeding, compressive strength and environmental pollution evaluation to evaluate the material properties of low strength concrete using BFS and SS. In the case of low strength concrete using BFS and SS, blending of at least BFS 6000 within a 30% range regardless of the type of sand used was found to be the most effective approach for improving the workability by securing the minimum unit quantity of water, restraining the bleeding ratio and establishing compressive strength by taking account of the applicability at the work site. In particular, in view of the efficient use of SS, the optimal mixing condition was found to be the mixing of BFS 8000 with in the 30% range, not only for improving the workability restraining the bleeding ratio and establishing the compressive strength but also for application to the work site. Further, the results of tests on hazardous substance content and those of elution tests conducted on soil cement using SS indicated that all values satisfied the environmental standards without any harmful effects on the surrounding environment.

A Study on Cementation of Sand Using Blast Furnace Slag and Extreme Microorganism (고로슬래그와 극한미생물을 이용한 모래의 고결화 연구)

  • Park, Sung-Sik;Choi, Sun-Gyu;Nam, In-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • In this study, a blast furnace slag having latent hydraulic property with an alkaline activator for resource recycling was used to solidify sand without using cement. Existing chemical alkaline activators such as $Ca(OH)_2$ and NaOH were used for cementing soils. An alkaliphilic microorganism, which is active at higher than pH 10, is tested for a new alkaline activator. The alkaliphilic microorganism was added into sand with a blast furnace slag and a chemical alkaline activator. This is called the microorganism alkaline activator. Four different ratios of blast furnace slag (4, 8, 12, 16%) and two different chemical alkaline activators ($Ca(OH)_2$ and NaOH) were used for preparing cemented specimens with or without the alkaliphilic microorganism. The specimens were air-cured for 7 days and then tested for the experiment of unconfined compressive strength (UCS). Experimental results showed that as a blast furnace slag increased, the water content and dry density increased. The UCS of a specimen increased from 178 kPa to 2,435 kPa. The UCS of a specimen mixed with $Ca(OH)_2$ was 5-54% greater than that with NaOH. When the microorganism was added into the specimen, the UCS of a specimen with $Ca(OH)_2$ decreased by 11-60% but one with NaOH increased by 19-121%. The C-S-H hydrates were found in the cemented specimens, and their amounts increased as the amount of blast furnace slag increased through SEM analysis.

Effect of Types and Replacement Ratio of Alkali Activator on Compressive Strength of Ground Granulated Blast Furnace Slag Mortar (알칼리 자극제의 종류 및 치환율이 고로슬래그 미분말 모르타르의 압축강도에 미치는 영향)

  • Kim, Rae-Hwan;Kim, Gyu-Yong;Kim, Jong-Hee;Lee, Bo-Kyeong;Cho, Bong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.360-366
    • /
    • 2014
  • In this study, effect of types and replacement ratio of alkali activator on compressive strength of ground granulated blast furnace slag mortar has been reviewed. Types of alkali activator are NaOH, $Ca(OH)_2$, $Na_2SO_4$, and KOH. Replacement ratio of alkali activator is 7.5, 10, 12.5, and 15%, respectively. As results, under high temperature curing condition, 1 day compressive strength development with NaOH and KOH was higher than that of $Ca(OH)_2$ and $Na_2SO_4$. Regardless of types of alkali activator, compressive strength increased with increasing pH. This can be explained by the fact that impermeable film on the surface of slag which is generated when slag contacts water has been destroyed by alkali activator, and this promotes hydration reaction. Also, 1 day age compressive strength of specimen with high temperature curing was higher than that of specimen with standard curing. 28 days age compressive strength of specimen with high temperature curing was less than or equal to that of specimen with standard curing.

Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process (열화학 황-요오드 수소 생산 공정의 요오드 결정화기 설계를 위한 결정 침강 모델링)

  • Park, Byung Heung;Jeong, Seong-Uk;Kang, Jeong Won
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.768-774
    • /
    • 2014
  • SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of $I_2$ from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an $I_2$ removal process. In this work, $I_2$ particle sinking behavior was modeled to secure basic data for designing an $I_2$ crystallizer applied to $I_2$-saturated $HI_x$ solutions. The composition of $HI_x$ solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to $I_2$ particle radius and temperature. The terminal velocity of an $I_2$ particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to $50^{\circ}C$) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

Properties of non-cement mortars with small addition of alkali activator using fly ash and fused waste slag (석탄회 및 용융폐기물 슬래그에 소량의 알칼리 활성화제를 첨가한 무시멘트 모르타르의 특성)

  • Kim, Yootaek;Lee, Kyongwoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.257-262
    • /
    • 2015
  • Recently the world wide efforts reduce occurrence of $CO_2$; global warming main reason. The aim of this study is to improve recycling rate of the fly ash (FA) and fused waste slag (FWS) from the power plant and to carbonate under supercritical condition ($40^{\circ}C$, $80kgf/cm^2$ pressure, 60 min) for $CO_2$ fixation. Specimens of mortar with various mixing ratios of FA, FWS (from 100:0 to 20:80 in 5 steps of 20 % reduction each time), distilled water and 3 M NaOH alkali activators were prepared. As a result, the proportion of weight change ratio increases with CaO content, to 12 % after carbonation under the supercritical condition. There is difference of compressive strength between the carbonated and the alkali activator mortar specimens. The stabilization of $CO_2$ fixation through carbonation which could confirm the applicability of the eco-friendly materials without loss of compressive strength.

Performance Evaluation for the A/O Pure-Oxygen Biofilm (POB) Process on the Removal of Organics and TKN in the Industrial Wastewater (혐기/호기 순산소 생물막공법에 의한 산업폐수의 유기물 및 TKN 제거 성능평가)

  • Jang, Am;Kim, Hong Suck;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.837-847
    • /
    • 2000
  • For the treatment of wastewaters generated from beer industry and petrochemical company with high organic and nitrogen contents, laboratory scale of A/O Pure-Oxygen Biofilm (POB) process was developed and studied by means of the comparative economic analysis with extended aeration process. When the wastewater of beer company was initially treated by the A/O POB process in the ranges of 70 to 150 mg TOC/L diluted with tap water, higher than 92% of TOC removal was accomplished in the all ranges. In case of petrochemical wastewater, the initial TOC removal was as low as 52%, though, it increased to 86% after 32 days of operation and also the TKN removal marked 71% after 27 days. Continuous high removal rates were monitored in both the TOC and TKN parameters during the experimental period. Due to the cost for PSA (Pressure Swing Adsorption) setting and biomass supporting media installation, the initial construction cost of A/O POB process was 2.9 times higher than that of extended aeration process. However, the advantages such as low sludge production, no need for sludge recycling and low energy consumption allow the A/O POB process to have 2.5 times lower operation and maintenance costs. Consequently, in the long term of operation, it is likely that A/O POB process would show higher performance as well as cost effectiveness compared to extended aeration process.

  • PDF