• Title/Summary/Keyword: Recycling Strategy

Search Result 101, Processing Time 0.022 seconds

CGI-58 Protein Acts as a Positive Regulator of Triacylglycerol Accumulation in Phaeodactylum tricornutum

  • Qin Shu;Yufang Pan;Hanhua Hu
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.242-250
    • /
    • 2023
  • Comparative gene identification-58 (CGI-58) is an activating protein of triacylglycerol (TAG) lipase. It has a variety of catalytic activities whereby it may play different roles in diverse organisms. In this study, a homolog of CGI-58 in Phaeodactylum tricornutum (PtCGI-58) was identified. PtCGI-58 was localized in mitochondria by GFP fusion protein analysis, which is different from the reported subcellular localization of CGI-58 in animals and plants. Respectively, PtCGI-58 overexpression resulted in increased neutral lipid content and TAG accumulation by 42-46% and 21-32%. Likewise, it also increased the relative content of eicosapentaenoic acid (EPA), and in particular, the EPA content in TAGs almost doubled. Transcript levels of genes involved in de novo fatty acid synthesis and mitochondrial β-oxidation were significantly upregulated in PtCGI-58 overexpression strains compared with wild-type cells. Our findings suggest that PtCGI-58 may mediate the breakdown of lipids in mitochondria and the recycling of acyl chains derived from mitochondrial β-oxidation into TAG biosynthesis. Moreover, this study potentially illuminates new functions for CGI-58 in lipid homeostasis and provides a strategy to enrich EPA in algal TAGs.

Dual-Toehold-Probe-Mediated Exonuclease-III-Assisted Signal Recycles Integrated with CHA for Detection of mecA Gene Using a Personal Glucose Meter in Skin and Soft Tissue Infection

  • Jiaguang Su;Wenjun Zheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1692-1697
    • /
    • 2023
  • Staphylococcus aureus integrated with mecA gene, which codes for penicillin-binding protein 2a, is resistant to all penicillins and other beta-lactam antibiotics, resulting in poor treatment expectations in skin and soft tissue infections. The development of a simple, sensitive and portable biosensor for mecA gene analysis in S. aureus is urgently needed. Herein, we propose a dual-toehold-probe (sensing probe)-mediated exonuclease-III (Exo-III)-assisted signal recycling for portable detection of the mecA gene in S. aureus. When the target mecA gene is present, it hybridizes with the sensing probe, initiating Exo III-assisted dual signal recycles, which in turn release numerous "3" sequences. The released "3" sequences initiate catalytic hairpin amplification, resulting in the fixation of a sucrase-labeled H2 probe on the surface of magnetic beads (MBs). After magnet-based enrichment of an MB-H1-H2-sucrase complex and removal of a liquid supernatant containing free sucrase, the complex is then used to catalyze sucrose to glucose, which can be quantitatively detected by a personal glucose meter. With a limit of detection of 4.36 fM for mecA gene, the developed strategy exhibits high sensitivity. In addition, good selectivity and anti-interference capability were also attained with this method, making it promising for antibiotic tolerance analysis at the point-of-care.

An Information Management Strategy Over Entire Life Cycles of Hazardous Waste Streams (유해폐기물 생애 전주기 흐름 기반 정보 관리 전략)

  • Lee, Sang-hun;Kim, Jungeun
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.228-236
    • /
    • 2020
  • Korea has an economy based on manufacturing industrial fields, which produce high amounts of hazardous wastes, in spite of few landfill candidates, and a significant concern for fine airborne particulates; therefore, traditional waste management is difficult to apply in this country. Moreover, waste collection and accumulation have recently been intensified by the waste import prohibitions or regulations in developing nations, the universalization of delivery services in Korea, and the global COVID-19 crisis. This study thus presents a domestic waste management strategy that aims to address the recent issues on waste. The contents of the strategy as the main results of the study include the (1) improvement of the compatibility of the classification codes between the domestic hazardous waste and the international ones such as those of the Basel Convention; (2) consideration of the mixed hazard indices to represent toxicity from low-content components such as rare earth metals often contained in electrical and electronic equipment waste; (3) management application based on risks throughout the life cycles of waste; (4) establishment of detailed material flow information of waste by integrating the Albaro system, Pollutant Release and Transfer Register (PRTR) system, and online trade databases; (5) real-time monitoring and prediction of the waste movement or discharge using positional sensors and geographic information systems, among others; and (6) selection and implementation of optimal treatment or recycling practices through Life Cycle Assessment (LCA) and clean technologies.

Environmental Evaluation for the Remanufacturing of Rental Product Using the LCA Methodology (LCA기법을 이용한 랜탈 재제조품의 환경성 평가)

  • Kwak, In-Ho;Hwang, Young-Woo;Park, Kwang-Ho;Park, Ji-Hyoung;Seol, So-Young;Shin, Hwa-Jeong;Yang, Eun-Hyeok;Min, Gon-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.611-617
    • /
    • 2016
  • Remanufacturing that is the rebuilding of a product to specifications of the original manufactured product by collecting used-product, completely disassembling, cleaning and repairing or replacing with a new part and reassembling has been received attention in aspects of resource, recycling because it is a great environmental improvement. Remanufacturing is the rebuilding of a product to specifications of the original manufactured product by collecting used-product, completely disassembling, cleaning and repairing or replacing with a new part and reassembling. With a great environmental improvement and resource recycling and conservation, many studies were conducted. Up to date, remanufacturing activities are mainly applied to automobile parts and printer toner cartridge in South Korea. However, remanufacturing of rental product is not well conducted although rental products are collected in good condition and could be remanufactured in the same condition as a new product. Therefore, in this study, we conducted life cycle assessment (LCA) to an air cleaner product that is one of rental products. This study attempts to identify the processes in new products and remanufacturing life cycles that contribute the most environmental impacts. The results show that air cleaner remanufacturing could reduce about 20% of environmental impacts compared to new product. The greatest benefit related to environmental impact is with regard to ozone layer depletion potential (ODP), which is reduced by 94%. In the life cycle of air cleaner, raw material extraction stage had the most environmental impacts, especially with regard to abiotic depletion potential (ADP) and global warming potential (GWP). In the environmental impacts in each part, the ABS power had the highest environmental impacts.

Development of Korean Green Business/IT Strategies Based on Priority Analysis (한국의 그린 비즈니스/IT 실태분석을 통한 추진전략 우선순위 도출에 관한 연구)

  • Kim, Jae-Kyeong;Choi, Ju-Choel;Choi, Il-Young
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.191-204
    • /
    • 2010
  • Recently, the CO2 emission and energy consumption have become critical global issues to decide the future of nations. Especially, the spread of IT products and the increased use of internet and web applications result in the energy consumption and CO2 emission of IT industry though information technologies drive global economic growth. EU, the United States, Japan and other developed countries are using IT related environmental regulations such as WEEE(Waste Electrical and Electronic Equipment), RoHS(Restriction of the use of Certain Hazardous Substance), REACH(Registration, Evaluation, Authorization and Restriction of CHemicals) and EuP(Energy using Product), and have established systematic green business/IT strategies to enhance the competitiveness of IT industry. For example, the Japan government proposed the "Green IT initiative" for being compatible with economic growth and environmental protection. Not only energy saving technologies but energy saving systems have been developed for accomplishing sustainable development. Korea's CO2 emission and energy consumption continuously have grown at comparatively high rates. They are related to its industrial structure depending on high energy-consuming industries such as iron and steel Industry, automotive industry, shipbuilding industry, semiconductor industry, and so on. In particular, export proportion of IT manufacturing is quite high in Korea. For example, the global market share of the semiconductor such as DRAM was about 80% in 2008. Accordingly, Korea needs to establish a systematic strategy to respond to the global environmental regulations and to maintain competitiveness in the IT industry. However, green competitiveness of Korea ranked 11th among 15 major countries and R&D budget for green technology is not large enough to develop energy-saving technologies for infrastructure and value chain of low-carbon society though that grows at high rates. Moreover, there are no concrete action plans in Korea. This research aims to deduce the priorities of the Korean green business/IT strategies to use multi attribute weighted average method. We selected a panel of 19 experts who work at the green business related firms such as HP, IBM, Fujitsu and so on, and selected six assessment indices such as the urgency of the technology development, the technology gap between Korea and the developed countries, the effect of import substitution, the spillover effect of technology, the market growth, and the export potential of the package or stand-alone products by existing literature review. We submitted questionnaires at approximately weekly intervals to them for priorities of the green business/IT strategies. The strategies broadly classify as follows. The first strategy which consists of the green business/IT policy and standardization, process and performance management and IT industry and legislative alignment relates to government's role in the green economy. The second strategy relates to IT to support environment sustainability such as the travel and ways of working management, printer output and recycling, intelligent building, printer rationalization and collaboration and connectivity. The last strategy relates to green IT systems, services and usage such as the data center consolidation and energy management, hardware recycle decommission, server and storage virtualization, device power management, and service supplier management. All the questionnaires were assessed via a five-point Likert scale ranging from "very little" to "very large." Our findings show that the IT to support environment sustainability is prior to the other strategies. In detail, the green business /IT policy and standardization is the most important in the government's role. The strategies of intelligent building and the travel and ways of working management are prior to the others for supporting environment sustainability. Finally, the strategies for the data center consolidation and energy management and server and storage virtualization have the huge influence for green IT systems, services and usage This research results the following implications. The amount of energy consumption and CO2 emissions of IT equipment including electrical business equipment will need to be clearly indicated in order to manage the effect of green business/IT strategy. And it is necessary to develop tools that measure the performance of green business/IT by each step. Additionally, intelligent building could grow up in energy-saving, growth of low carbon and related industries together. It is necessary to expand the affect of virtualization though adjusting and controlling the relationship between the management teams.

Effect of by New and Renewable Energy Utilization on $CO_2$ Reduction in Rural-type Green Village (농촌형 녹색마을 내 신재생에너지 활용에 따른 $CO_2$ 저감 효과)

  • Kim, J.G.;Ryou, Y.S.;Kang, Y.K.;Kim, Y.H.;Jang, J.K.;Kim, H.T.;Lee, S.K.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.44-52
    • /
    • 2012
  • As an alternative strategy in the era of high level petroleum cost, the study focused to suggest the way on the revitalization of renewable energy through the impact on introduction effect of renewable energy in green village. Total feasible solar energy production is 6.73 GWh/yr along with the biomass energy producing electric power energy is 134.06 GWh/yr, the two category's total electric power energy is 233.19 GWh/yr, which is possible to achieve the selfsufficiency of energy by 33% for total energy consumption of 705.80 GWh/yr in the region. The calculated feasibility on the carbon dioxide reduction, carbon dioxide reduction level is 1,891 ton_$CO_2$ by agricultural byproducts, 43,635 ton_$CO_2$ by livestock waste, 395 ton_$CO_2$ by municipal waste, 50,324 ton_$CO_2$ by forest byproducts, the total biomass shows 96,245 ton_$CO_2$, while the carbon dioxide reduction of solar light energy is 2,251 ton_$CO_2$, 1,383.3 ton_$CO_2$ by solar heat energy, the total solar energy shows 3,634 ton_$CO_2$. So total carbon dioxide reduction effect shows 99,879 ton_$CO_2$.

Feasibility of Co-Digestion of Sewage Sludge, Swine Waste, and Food Waste Leachate (하수슬러지, 돈분뇨, 음식물쓰레기 탈리액 병합소화 타당성 평가)

  • Kim, Sang-Hyoun;Ju, Hyun-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.61-70
    • /
    • 2012
  • Feasibility of co-digestion was investigated by a series of anaerobic batch experiments using sewage sludge, swine waste, and food waste leachate as substrates. The organic solid wastes were collected from M city, where the daily productions of sewage sludge, swine waste, and food waste leachate were 178 ton/d, 150 ton/d, and 8 ton/d, respectively. Both swine waste and food waste leachate showed superior methane yields, methane productivities, and organic pollutant removal efficiencies compared to sewage sludge. Co-digestion of the total amounts of organic solid wastes would enhance methane production by 5.60 times $(530\;m^{3}\;CH_{4}/d\;{\rightarrow}\;2,968\;m^{3}\;CH_{4}/d)$. However, it also increase the amount of digestate by 1.88 times with 3.79 to 4.92 times higher pollutants (chemical oxygen demands total nitrogen, and total phosphorus) loading rates. Co-digestion of organic solid wastes is a valid strategy to enhance the performance of an anaerobic sludge digester and the energy independence of a wastewater treatment plant. Anyhow,the increment of digestate with higher pollutant loading would need a careful counterplan in the operation of the main stream of the treatment plant.

Impacts for Waste Management According to Waste Trade (폐기물 수출입 흐름 변화가 폐기물 관리에 미치는 영향)

  • Lee, Sang-hun
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.43-50
    • /
    • 2020
  • This study reviewed the examples on analyses of the potential impacts to waste management, due to the recent trends of waste trade regulation, and summarized an analysis strategy of the impacts. As a result, a desirable analysis may begin with reasonable estimation of recent waste amounts and flows, and reasonable prediction of the future trends of waste amounts. Then, it is effective to list various key factors and derive future scenarios of the impacts, as well as employ the traditional viewpoints focusing on waste material flow or environmental regulations. The applicable analyses for each scenario can be largely divided into qualitative and quantitative methods. Due to a high uncertainty in the recent international situations with entailing possible innovative economic changes, qualitative methods may be considered in advance, and then quantitative techniques may be utilized to predict gradual changes at relieved uncertainty of the situations. Based on this review so far, proper methodology and procedures for the impact analysis were suggested on recent waste trade conditions in Korea. Given existence of the recent uncertainties such as the health and economic crises, the analysis preferably focused on deriving strategic scenarios with respect to various aspects, and suggested analysis methods applicable to each scenario.

Strategy to Recover Rare Earth Elements from a Low Grade Resource via a Chemical Decomposition Method (화학적 분해법을 이용한 난용성 자원으로부터 희토류 회수 특성 연구)

  • Kim, Rina;Cho, Heechan;Jeong, Jinan;Kim, Jihye;Lee, Sugyeong
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • In this study, rare earth elements (REE) leaching from a refractory REE ore containing goethite as a major gangue mineral was conducted, introducing a two-stage method of chemical decomposition-acid leaching. At the chemical decomposition step, using one of alkaline agent, NaOH, the ore was decomposed, changing NaOH concentration from 20 to 50 wt% at 10% (w/w) of pulp density and the maximum temperature achieved without boiling at each NaOH concentration. With increasing NaOH concentration, light REE (Ce, La and Nd) and iron were concentrated in the solid phase which is the decomposed product, while aluminum (Al) and phosphorus (P) were removed to the liquid phase, and their concentrations in the solid phase were down to 0.96 and 0.17%, respectively. In addition, through XRD analysis, it was found that the crystallinity of goethite was considerably decreased. At the acid leaching step, the product decomposed by 50 wt% NaOH was leached at 3.0 M HCl and 80 ℃ for 3 hr, then the REE leaching efficiency was above 94% (Ce 80%), and the leaching efficiencies of Al and P were decreased to 12 and 0%, respectively. Therefore, in terms of both REE leaching efficiency and impurity removal, those decomposition and leaching conditions were chosen as optimum processing methods of the investigated material. In terms of REE leaching mechanism, because REE and iron leaching efficiencies showed the positive correlation each other, so it can be concluded that decreasing crystallinity of goethite affect the improvement of REE leaching.

A neural-based predictive model of the compressive strength of waste LCD glass concrete

  • Kao, Chih-Han;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2017
  • The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.