• Title/Summary/Keyword: Recycling Rate

Search Result 1,019, Processing Time 0.022 seconds

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals (시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구)

  • Choi, Younghun;Hwang, Jinyeon;Lee, Hyomin;Oh, Jiho;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.

Nutrient Balance during Rice Cultivation in Sandy Soil affected by the Fertilizer Management (사질논에서 벼 재배기간 중 시비방법별 양분수지)

  • Roh, Kee-An;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.155-163
    • /
    • 1999
  • Nutrient balance during rice cultivation in the paddy of a local area under the environmental protection for drinking water supply was investigated. To compare nutrient balance in the paddy soil applied with different types of fertilization, 7 treatments were selected as followings : Recommended level of chemical fertilizers(R), Conventional fertilization(CF), Fresh cow manure(FCM), Cow manure compost(CMC), Straw compost+reduced chemical fertilizer(SCF), Fresh straw+recommended level of fertilizers(FSC), and no fertilization as control(C). Here, FCM, CMC and SCF were applied at the same level of total nitrogen as recommended in R. Rice yield was the highest in the recommendation(R) and fresh cow manure (FCM) treatments with $6,730kg\;ha^{-1}$(index 100), and followed by SCF (index 98), FSC (index 98), CMC(index 94), and CF(index 94). But statistically significant difference was not recognized among treatments except the control. Nitrogen infiltration loss was high in the simple chemical fertilizer treatments with $63kg\;ha^{-1}$ in CF and $58kg\;ha^{-1}$ in R during rice cultivation, respectively. Nitrogen infiltration loss was decreased below half level of chemical fertilizer treatments with cow manure treatments ($23kg\;ha^{-1}$ in FCM and $27kg\;ha^{-1}$ in CMC) and with reducing chemical fertilizer treatment by adding straw compost ($25kg\;ha^{-1}$). Phosphate was not leached during rice cultivation in paddy soil of a fluvial deposit type, in which oxidation horizon was developed broadly under around 15 cm depth of surface soil. Phosphate balance (A-B) was closed to 0 in all treatments except cow manure treatment (CMC), in which it was $+30kg\;ha^{-1}$ and show the possibility of over accumulation of phosphate by continuously replicated application of cow manure compost. Potassium balance was negative value in all but straw recycling treatment (FSC). It means that potassium was continuously supplied from soil minerals, uptaken by plants or eluted out of soil. In conclusion, by substituting inorganic fertilizer for organic fertilizer or reducing application rate of chemical fertilizer through mixing organic fertilizer, it would be possible to achieve the same rice yield as in the recommendation treatment and to decrease nutrient leaching below half level in rice paddy soil.

  • PDF

Environmental Impact Assessment of Rapeseed Cultivation by Life Cycle Assessment (전과정평가를 이용한 유채재배의 환경영향 평가)

  • Hong, Seung-Gil;Nam, Jae-Jak;Shin, Joung-Du;Ok, Yong-Sik;Choi, Bong-Su;Yang, Jae-E.;Kim, Jeong-Gyu;Lee, Sung-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • BACKGROUND: High input to the arable land is contributed to increasing productivity with causing the global environmental problems at the same time. Rapeseed cultivation has been forced to reassess its positive point for utilization of winter fallow field. The Objective of this study was performed to assess the environmental impact of rapeseed cultivation with double-cropping system in paddy rice on Yeonggwang district using life cycle assessment technique. METHODS AND RESULTS: For assessing each stage of rapeseed cultivation, it was collected raw data for input materials as fertilizer and pesticide and energy consumption rate by analyzing the type of agricultural machinery and working hours by 1 ton rapeseed as functional unit. Environmental impacts were evaluated by using Eco-indicator 95 method for 8 impact categories. It was estimated that 216 kg $CO_2$-eq. for greenhouse gas, 3.98E-05 kg CFC-11-eq. for ozone lazer depletion, 1.78 kg SO2-eq. for acidification, 0.28 kg $PO_4$-eq. for eutrophication, 5.23E-03 kg Pb-eq. for heavy metals, 2.51E-05 kg B(a)p-eq. for carcinogens, 1.24 kg SPM-eq. for smog and 6,460 MJ LHV for energy resource are potentially emitted to produce 1 ton rapeseed during its whole cultivation period, respectively. It was considered that 90% of these potential came from chemical fertilizer. For the sensitivity analysis, by increasing the productivity of rapeseed by 1 ton per ha, potential environmental loading was reduced at 22%. CONCLUSION(s): Fertilization affected most dominantly to the environmental burden, originated from the preuse stage, i.e. fertilizer manufacturing and transporting. It should be included and assessed an indirect emission, which is not directly emitted from agricultural activities. Recycling resource in agriculture with reducing chemical fertilizer and breeding the high productive variety might be contribute to reduce the environmental loading for the rapeseed cultivation.

Monitoring of Feed-Nutritional Components, Toxic Heavy Metals and Pesticide Residues in Mushroom Substrates According to Bottle Type and Vinyl Bag Type Cultivation (버섯의 봉지재배 및 병재배 시 재배단계별 배지의 사료영양적 성분, 독성중금속 및 잔류농약 모니터링)

  • Kim, Y.I.;Bae, J.S.;Huh, J.W.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.67-78
    • /
    • 2007
  • This study was carried out to monitor feed-nutritional components, toxic heavy metals (Cd, Pb and As) and pesticide residues through three cultivation stages (1st initial culture stage, 2nd mycelial growth stage, and 3rd fruit body-harvested stage) of king oyster mushroom (Pleurotus eryngii) produced by bottle type cultivation and oyster mushroom (Pleurotus osteratus) produced by vinyl bag type cultivation. For both cultivation types, compared with the initial culture, the weight reduction rate in spent mushroom substrates (SMS) after fruit body harvest was 29% for total wet mass, 21~25% for dry and organic matters and 19 ~22% for neutral detergent fiber. Two thirds to 3/4 of organic matter degraded and utilized by mycelia and fruit bodies was originated from fiber, of which the primary source (50~70%) was hemicellulose. The effect of mycelial growth stage on chemical compositional change in culture was little (P>0.05) for bottle type cultivation of king oyster mushroom but considerable (P<0.05) for vinyl type cultivation of oyster mushroom. Culture nutrients uptake by fruit bodies was very active for the bottle type cultivation. Compared with SMS, harvested fruit bodies (mushrooms) contained higher (P<0.05) crude protein, non-fibrous carbohydrate, and crude ash and lower (P<0.05) neutral detergent fiber. Regardless of stages, no culture samples were contaminated with toxic heavy metals and pesticide residues. In conclusion, the increase of fiber (neutral and acid detergent fibers) and indigestible protein contents and the decrease of true protein content in SMS indicated that the feed-nutritional value of SMS was significantly reduced compared with that of the initial culture and they were safe from toxic heavy metals and pesticide residues.

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles (Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구)

  • Yoo, Jeong-Yeol;Lee, Young-Ki;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.397-406
    • /
    • 2015
  • ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

The Effect of Dexamethasone on Gene Expression and Total Amount of Surfactant Protein A (스테로이드제가 Surfactant Protein A의 유전자 발현과 총단백량에 미치는 영향에 관한 실험적 연구)

  • Lim, Byung Sung;Sohn, Jang Won;Yang, Seok Chul;Yoon, Ho Joo;Shin, Dong Ho;Park, Sung Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.4
    • /
    • pp.395-404
    • /
    • 2002
  • Background : Surfactant protein A (SP-A) is important for regulating surfactant secretion, synthesis and recycling. However, It's regulation in vivo is unclear. SP-A has important roles in regulating surfactant metabolism as well as determining its physical properties. Glucocorticoid accelerates the morphologic differentiation of epithelial cells into type II cells and increase the rate of phosphatidylcholine synthesis. Methods : The authors investigated the effects of glucocorticoid on the accumulation of mRNA encoding SP-A and SP-A protein content. Adult rats were given various doses of subcutaneous dexamethasone and sacrificed after 24 hours and one week. SP-A mRNA was measured using a filter hybridization method. The lung SP-A protein content was determined using a double sandwich ELISA assay with polyclonal antiserum raised in rabbits against purified rat SP-A. Results : 1) The accumulation of SP-A mRNA in the dexamethasone treated group 24 hours after 0.2 mg/kg dexamethasone treatment was increased 38.8% compared to the control group. 2) The accumulation of SP-A mRNA in the dexamethasone treated group 1 week after 2 mg/kg dexamethasone treatment was 49.7% higher than the control group(P<0.01). 3) The total lung SP-A level was not altered after 24 hours by the 0.2mg/kg treatment. The total lung SP-A content one week after 2mg/kg dexamethasone administration was 373.7% higher than the control group(P<0.005). Conclusion : Dexamethasone treatment results in an increase in the SP-A mRNA and SP-A protein levels, suggesting that the pretranslational events in vivo may in part contribute to this process.

Photosynthesis, Growth and Yield Characteristics of Peucedanum japonicum T. Grown under Aquaponics in a Plant Factory (식물공장형 아쿠아포닉스에서 산채 갯기름의 광합성, 생육 및 수량 특성)

  • Lee, Hyoun-Jin;Choi, Ki-Young;Chiang, Mae-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • This study aimed to determine the photosynthesis and growth characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory (AP) by comparing those grown under hydroponic cultivation system (HP). The AP system raised 30 fishes at a density of 10.6 kg·m-3 in a 367.5 L tank, and at HP, nutrient solution was controlled with EC 1.3 dS·m-1 and pH 6.5. The pH level ranged from 4.0 to 7.1 for the AP system and 4.0 to 7.4 for the HP system. The pH level in the AP began to decrease with an increase in nitrate nitrogen (NO3-N) and lasted bellower than pH 5.5 for 15-67 DAT. It was found that ammonium nitrogen (NH4-N) continued to increase even under low pH conditions. EC was maintained at 1.3 to 1.5 dS·m-1 in both systems. The concentration of major mineral elements in the fish tank was higher than that of the hydroponics, except for K and Mg. There was no significant difference in the photosynthesis characteristics, but the PIABS parameters were 30.4% lower in the AP compared to the HP at the 34DAT and 12.0% lower at the 74DAT. There was no significant difference in the growth characteristics, but the petiole length was 56% longer in the leaf grown under the AP system. While there was no significant difference in the fresh and dry weights of leaf and root, the leaf area ratio was 36.43% higher in the AP system. All the integrated results suggest that aquaponics is a highly-sustainable farming to safely produce food by recycling agricultural by-products, and to produce Peucedanum japonicum as much as hydroponics under a proper fish density and pH level.

Effect of Eddy on the Cycle of 210Po and 234 in the central Region of Korean East Sea (동해 중부해역에서 210Po과 234Th의 순환에 대한 소용돌이의 영향)

  • YANG, HAN SOEB;KIM, SOUNG SOO;LEE, JAE CHUL
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.279-287
    • /
    • 1995
  • The vertical profiles of natural 210Pb, 210Po and 234Th activities were measured for the upper 100 m of water column at three stations in the middle region of the Korean East Sea during May 1992. And the distribution of these radionuclides was discussed associated with the formation of warm eddy or water mass. The main thermocline was maintained between the depth of 50 and 100 m at the southern station (Sta. A1), and between the depth of 10 to 50 m at the coastal station of Sockcho (Sta. B10). Contrastingly, a main thermocline at Sta. A10, which locates near the center of warm eddy, was observed below 230 m depth. Between 50 and 220 m depth of Sta. A10 is there a relatively homogeneous water mass of 10.1${\pm}$0.5$^{\circ}C$, which is significantly higher in temperature and lower in nutrient than the other two stations. It seems to be due to sinking of the warm surface water in which nutrients were completely consumed. Both 210Pb and 210Po show the highest concentration at Sta. A1 and the lowest at Sta. B10 among the three stations. Also, the 210Pb activity is generally higher in the upper layer than in the lower layer, while 210Po activity represents the reversed pattern at all three stations. At Sta. A1 and Sta. B10, the activities of 210Po relative to its parent 210Pb were deficient in the water column above the main thermocline, but were excess below the thermocline. However, the station near the center of warm eddy(Sta. A10), shows no excess of 210Po in the depths below 50 m, although its defficiency is found in the upper layer like the other stations. At Sta. A1 and b10. 234Th activities are slightly lower in the surface mixed layer than in the deeper region However, at Sta. A10, 234Th activity in the upper 30 m is higher than below 50 m or in the same depth of the other stations, probably because of the high concentration of particulate matter. The residence time of 210Po in the surface mixed layer at Sta. A10 is 0.4 year, much shorter than at the other two stations(about one year). Above 100 m depth, the residence times of 234Th range from 18 to 30 other two stations(about on year). Above 100 m depth, the residence times of 234Th range from 18 to 30 days at all stations, without significant regional variation. The percentages of recycled 210Po within the thermocline are 39% and 92% at Sta. A1 and Sta. B10, respectively. Much higher value at Sta. B10 may be due to a thin thickness of the mixed layer as well as the slower recycling rate of 210Po in the main thermocline.

  • PDF

Application of OECD Agricultural Water Use Indicator in Korea (우리나라에 적합한 OECD 농업용수 사용지표의 설정)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.321-327
    • /
    • 2006
  • In Korea, there is a growing competitive for water resources between industrial, domestic and agricultural consumer, and the environment as many other OECD countries. The demand on water use is also affecting aquatic ecosystems particularly where withdrawals are in excess of minimum environmental needs for rivers, lakes and wetland habits. OECD developed three indicators related to water use by the agriculture in above contexts : the first is a water use intensity indicator, which is expressed as the quantity or share of agricultural water use in total national water utilization; the second is a water stress indicator, which is expressed as the proportion of rivers (in length) subject to diversion or regulation for irrigation without reserving a minimum of limiting reference flow; and the third is a water use efficiency indicator designated as the technical and the economic efficiency. These indicators have different meanings in the aspect of water resource conservation and sustainable water use. So, it will be more significant that the indicators should reflect the intrinsic meanings of them. The problem is that the aspect of an overall water flow in the agro-ecosystem and recycling of water use not considered in the assessment of agricultural water use needed for calculation of these water use indicators. Namely, regional or meteorological characteristics and site-specific farming practices were not considered in the calculation of these indicators. In this paper, we tried to calculate water use indicators suggested in OECD and to modify some other indicators considering our situation because water use pattern and water cycling in Korea where paddy rice farming is dominant in the monsoon region are quite different from those of semi-arid regions. In the calculation of water use intensity, we excluded the amount of water restored through the ground from the total agricultural water use because a large amount of water supplied to the farm was discharged into the stream or the ground water. The resultant water use intensity was 22.9% in 2001. As for water stress indicator, Korea has not defined nor monitored reference levels of minimum flow rate for rivers subject to diversion of water for irrigation. So, we calculated the water stress indicator in a different way from OECD method. The water stress indicator was calculated using data on the degree of water storage in agricultural water reservoirs because 87% of water for irrigation was taken from the agricultural water reservoirs. Water use technical efficiency was calculated as the reverse of the ratio of irrigation water to a standard water requirement of the paddy rice. The efficiency in 2001 was better than in 1990 and 1998. As for the economic efficiency for water use, we think that there are a lot of things to be taken into considerations to make a useful indicator to reflect socio-economic values of agricultural products resulted from the water use. Conclusively, site-specific, regional or meteorogical characteristics as in Korea were not considered in the calculation of water use indicators by methods suggested in OECD(Volume 3, 2001). So, it is needed to develop a new indicators for the indicators to be more widely applicable in the world.