• Title/Summary/Keyword: Recycling Facilities

Search Result 243, Processing Time 0.021 seconds

A Study on Improvement of Food Waste Statistics System Through a Sample Survey (음식물류폐기물 발생량 표본조사를 통한 통계체계 개선 방안에 관한 연구)

  • Kim, Young Koo;Phae, Chae Gun;Ryu, Ji Young;Shin, Dae Yewn
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.3
    • /
    • pp.105-118
    • /
    • 2005
  • This study examined the improvements of existing food waste statistics system using a sample survey, which estimated the total food waste generation in 4 areas(High, Middle, Middle and Low, and Low population density), and a survey, which was aimed at forming a basis for modeling 112 local governments, were conducted. Currently, the methods for collecting the statistical data are summarized as five types. In high population density areas, the type based on examining the recycling facilities was found to be a more general way of estimating population centers higher than low population density areas. It was found that numerous low population density areas estimated their food waste production according to its generation per capita. It was also found that the findings of sample survey were 10%~40% higher than the existing statistical data and Non-separated collected food waste appears to be the main factor.

  • PDF

Development of Bag Rupturing Device with Octagonal Rotating Blade Drums for MSWs (생활계(生活系) 폐기물(廢棄物) 봉투(封套) 파봉을 위한 회전(回傳)칼날팔각(八角)드럼식(式) 파봉장치(裝置) 개발(開發)에 관(關)한 연구(硏究))

  • Lee, Byung-Sun;Na, Kyung-Duk;Han, Sang-Kuk;Choi, Woo-Zin;Park, Eun-Kyu;Kim, Dong-Ho
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.63-71
    • /
    • 2009
  • Recyclable wastes coming into material recovery facilities(MRFs) is mostly packed by plastic bag or sack bag. Bag rupturing device is essential to improve capacity and efficiency of MRFs. Bag opening works of MRFs is mostly done by numerous workers and shredder-type bag rupturing device. It often makes a problems; decreased capacity, shredded recyclables, worker safety by explosion and broken glasses, etc. In the present work, bag rupturing device with octagonal rotating blade drums has been developed to solve the existing problems and environment assessment is also performed during operation of the device. Capacity of the device was about 5.6 ton/hr at 8.2 rpm of drum revolution speed and 1.25 m/min of belt conveyor speed. It satisfied initial designed capacity(5.0 ton/hr) and max. capacity 8.8 ton/hr was achieved at 12.5 rpm of drum revolution speed and 1.50m/min of belt conveyor speed. Bag rupturing efficiencies on outer and inner bag were obtained at 100% and about 95.6% as average, respectively and original form of glass bottles in the bag was maintained without broken by about 96.5%. This result shows that the safety in hand sorting by the workers could be improved. As result of environmental assessment on the noise, vibration and particulates, the measured levels on noise, vibration and particulates show the below standard regulatory limits. It could be concluded that the problems of existing devices in MRFs could be solved by adopting the bag rupturing device with octagonal rotating blade drums in on-site operation.

Investigation on Economical Feasibility for Energy Business of Waste Water Sludge Discharged in 'A' Industrial Complex (A-산업단지 발생 슬러지의 에너지화를 위한 경제성 검토)

  • Byun, Jung-Joo;Lee, Kang-Soo;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.61-74
    • /
    • 2012
  • Industrial complexes in Korea have been vigorously established by economic development plan and development policy of industry in 1960s. Recently, Korean government has promoted Eco Industrial Park (EIP) project to recycle by-products and wastes in industrial park In this study, we analyzed the physical and chemical properties for the sludges discharged from A industrial complex. And we investigated the economic feasibility and environmental impact of sludge to energy facilities. The analysis results indicated that the petrochemical industry were 92% in sludge production, the highest treatment amount was landfill, followed by incineration and recycling and then ocean disposal. Wastewater sludge and process sludge samples are collected and analyzed to use as basic data on economic feasibility and environmental impact. Weighted average heating value of sludge samples was 3,891kcal/kg. Based on this data, installation and operation costs, operation returns of operating the drying facility are estimated, compared with cogeneration facility. And this study examines how the payback period of each simulation(total 8 case) with the important parameter changes. As a result, it was found that what needs the shortest payback period is 3years with connection of drying facility and cogeneration facility based on the government's financial subsidy system.

Analysis of R&D investment of waste reduce, recycle and energy recovery technology (폐기물 저감·재활용·에너지화 기술의 R&D 투자 현황 분석)

  • Hong, Jung Suk;Kim, Hyung-Gun
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • Waste reduce, recycle, energy recovery technology is one of 27 key green technology by 2012, the government should increase R&D investment, despite the period 2008 to 2010 average annual growth rate was decreased. Accordingly, this area of government investment in R&D status analyzed in detail and as a result, total government investment in R&D decreased, but in these fields to define strategic product services investment in technology is increasing centralization trend that appears to be investment in the quality of determined that the good is. In particular, in 2010, strategic product service of the technologies 3 technology groups ((1) waste energy equipment (2) waste resource recycling facilities (3) waste based materials production facilities) the proportion of 24-28% relatively evenly invested, government R&D is judged that adequate investment in quality.

A Study on the Reduction of Environmental Civil Appeals for In-site Crusher Facilities (현장파쇄시설의 환경민원 발생 저감방안 연구)

  • Jung, Jong-Suk;Lee, Jae-Sung;Lee, Kyoung-Hee;Jun, Myoung-Hoon;Bae, Kee-Sun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.5
    • /
    • pp.176-185
    • /
    • 2008
  • Recently, the construction wastes rapidly increase because of redevelopment, the development of new urbanization of large housing development, the expansion of social infrastructure. With increase of the construction noise, vibration, and dust caused by these developments, environmental conflicts and civil appeals increase. Moreover, the Government will reduce environmental level in the near future. Therefore, it will be expected to increase environmental conflicts and civil appels related to construction noise, vibration, and dust. To minimize environmental conflicts and civil appels, this study suggest the plan of prevention of environmental confliction and civil appeal by analyzing and measuring vibration, noise level, and dust of in-site crusher facilities at large and development district.

Mapping Soil Contamination using QGIS (QGIS를 이용한 토양오염지도 작성)

  • Kim, Ji-Young;Bae, Yong-Soo;Park, Jin-Ho;Son, Yeong-Geum;Oh, Jo-Kyo
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.487-496
    • /
    • 2019
  • Objective: The purpose of this study was to create soil contamination maps using QGIS (Quantum Geographic Information System) and suggest selection methods for soil pollution sources for preferential investigation in a soil contamination survey. Method: Data from soil contamination surveys over five years in Gyeonggi-do Province, South Korea (2013-2017) were used for making soil contamination maps and analyzing the density of survey points. By analyzing points exceeding the concern level of soil contamination, soil pollutant sources for priority management were identified and selection methods for preferred survey points were suggested through a study of the model area. Results: A soil contamination survey was conducted at 1,478 points over five years, with the largest number of surveys conducted in industrial complex and factory areas. Soil contamination maps for copper, zinc, nickel, lead, arsenic, fluoride, and total petroleum hydrocarbons were made, and most of the survey points were found to be below concern level 1 for soil contamination. The density of the survey points is similar to that of densely populated areas and factory areas. The analysis results of points exceeding the criteria showed that soil pollutant sources for priority management were areas where ore and scrap metals were used and stored, traffic-related facilities areas, industrial complex and factory areas, and areas associated with waste and recycling. According to the study of the model area, the preferred survey points were traffic-related facilities with 15 years or more since their construction and factories with a score of 10 or more for soil contamination risk. Conclusion: Soil contamination surveys should use GIS for even regional distribution of survey points and for the effective selection of preferred survey points. This study may be used as guidelines to select points for a soil contamination survey.

Backfill Materials for Underground Facility with Recycling Materials - Quantification of Design Parameters (재활용재료를 이용한 지하매설물용 뒤채움재 - 설계입력변수 정량화)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.91-96
    • /
    • 2011
  • The design, construction and management of underground facilities as infrastructure of nation should be properly carried out. One of reasons for underground facilitie's failure is a non-proper construction of backfill materials. This is common for circular underground pipes. A non-proper compaction is the cause of settlement and decrease of performance of underground facilities. The use of controlled low strength materials is an alternative to reduce the couple of failure problems. The flowability, self-cementation, and non-compaction are the major advantages to use the controlled low strength materials. In this research, couple of recycled materials, such as in-situ soil, water-treatment sludge, and crumb rubbers, were adopted. The basic properties of each materials were determined according to KS or ASTM. Also, couple of laboratory tests were carried out to get the design parameters for geotechnical and roadway area.

Low Carbonization Technology & Traceability for Sustainable Textile Materials (지속가능 섬유 소재 추적성과 저탄소화 공정)

  • Min-ki Choi;Won-jun Kim;Myoung-hee Shim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.673-689
    • /
    • 2023
  • To realize the traceability of sustainable textile products, this study presents a low-carbon process through energy savings in the textile material manufacturing process. Traceability is becoming an important element of Life Cycle Assessment (LCA), which confirms the eco-friendliness of textile products as well as supply chain information. Textile products with complex manufacturing processes require traceability of each step of the process to calculate carbon emissions and power usage. Additionally, an understanding of the characteristics of the product planning-manufacturing-distribution process and an overall understanding of carbon emissions sources are required. Energy use in the textile material manufacturing stage produces the largest amount of carbon dioxide, and the amount of carbon emitted from processes such as dyeing, weaving and knitting can be calculated. Energy saving methods include efficiency improvement and energy recycling, and carbon dioxide emissions can be reduced through waste heat recovery, sensor-based smart systems, and replacement of old facilities. In the dyeing process, which uses a considerable amount of heat energy, LNG, steam can be saved by using "heat exchangers," "condensate management traps," and "tenter exhaust fan controllers." In weaving and knitting processes, which use a considerable amount of electrical energy, about 10- 20% of energy can be saved by using old compressors and motors.

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

Analysis of Major Factors related to the Generation of Fine Particulate Matter in Hanwoo Manure Composting Facilities (한우분뇨 퇴비화시설에서의 미세 입자상물질 발생 주요인자 분석)

  • Jeong, Kwang-Hwa;Park, Hoe-Man;Lee, Dong-Jun;Kim, Jung-Kon;Lee, Dong-Hyun;Kim, Da-Hye
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.53-68
    • /
    • 2020
  • The concentrations of ammonia, hydrogen sulfide and fine dust were measured in the compost facility of a full-time Hanwoo breeding farms. The experiments were conducted in stack type composting facility(T1) and mechanical-stirred composting facilities(T2, T3). In the stack type composting facility, the highest temperature of compost pile was 46℃, and in the two mechanical-stirred composting facilities, it rose to 63℃ and 68℃, respectively. The concentrations of PM2.5 at T1, T2 were 15 ㎍/㎥ and 5~10 ㎍/㎥, respectively. And the concentration of PM2.5 at T3 was below 10 ㎍/㎥. The highest concentration of ammonia generated at T1 was 4 ppm, but no hydrogen sulfide was detected. The ammonia concentrations at T2 and T3 were 3 ppm and 4 ppm, respectively. However, hydrogen sulfide was not detected in both facilities. At T3, the ammonia concentration increased to 65 ppm at the point where the compost was stirred with a mechanical agitator. During composting period, the pH of the compost pile decreased from 9.06 to 8.94 and then increased to 9.14 as the composting period elapsed. The NaCl content of compost was 0.09% after composting process was complete. Moisture content of compost decreased from 65.9% to 62% as composting progressed. As composting proceeded, the content of volatile solids decreased from 65.6% to 64.7% and the content of TKN decreased from 1.327% to 1.095%.