• Title/Summary/Keyword: Recycled product

Search Result 271, Processing Time 0.026 seconds

The Fundamental Study on Development of Concrete-Product by Using Recycled Concrete Powder (재생미분말을 사용한 콘크리트 제품 개발에 대한 기초적인 연구)

  • Sun Joung-Soo;Kim Ha-Seok;Kwag Eun-Gu;Jun Myoung-Hoon;Kim Bong-Ju;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.19-22
    • /
    • 2006
  • The quantity of Recycled concrete powder is increased, because it hal been ever so often crushing for production of a good quality recycled aggregates This Study is on the Development of Concrete-Product by Using Recycled Concrete Powder and alto for know performance of concrete-producted having low water contents and it is to know for all of performance of concrete-producted having low water contents The conclusions of this study are following. The use of replacement cement is not effective, because it has strengh of less than 10MPa But It is possible to develop high strength concrete-producted having 39MPa above compressive strength by using recycled concrete powder. Because strength enhancement effects by recycled concrete powder are responsible to optimum grading. The conclusions of this study are following. The use of replacement cement is not effective, because it has strengh of less than 10MPa. It is possible to develop high strength concrete-producted having 39MPa above compressive strength by using recycled concrete powder. Because strength enhancement effects by recycled concrete powder are responsible to optimum grading.

  • PDF

Characteristics of Materials Recycling Product Using CPW from Households According to the Amount of r-LDPE (r-LDPE 혼입율에 따른 생활계 복합 폐플라스틱 물질재활용 제품 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Sang-Jin;Shin, Sung-Chul;Lee, Min-Hi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.425-432
    • /
    • 2021
  • In this paper, We produced supporting for ginseng cultivation facilities as a material recycling product of CPW(Complex Plastic Wastes, CPW) from households. And we analyzed the characteristics of material recycling products according to the amount of r-LDPE(Recycled low density polyethylene, r-LDPE) used. As a result, as the amount of recycled LDPE used increa sed, the tensile strength a nd elonga tion of ma teria l recycled products using CPW increa sed, but a sh decrea sed. When the recycled r-LDPE usage is 5% or more, the physical properties of the material recycling product using CPW stably satisfy the quality standard (GRM 3093-2021) of supporting for ginseng cultivation facilities.

Quality of Recycled Fine Aggregate using Neutral Reaction with Sulfuric Acid and Low Speed Wet Abrader

  • Kim, Ha-Seog;Lee, Kyung-Hyun;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.490-502
    • /
    • 2012
  • The use of recycled aggregate, even for low-performance concrete, has been very limited because recycled aggregate, which contains a large amount of old mortar, is very low in quality. To produce a high-quality recycled aggregate, removing the paste that adheres to the recycled aggregate is very important. We have conducted research on a complex abrasion method, which removes the component of cement paste from recycled fine aggregate by using both a low-speed wet abrasion crusher as a mechanical process and neutralization as chemical processes, and well as research on the optimal manufacturing condition of recycled fine aggregates. Subsequently, we evaluated the quality of recycled fine aggregate manufactured using these methods, and tested the specimen made by this aggregate. As a result, it was found that recycled fine aggregates produced by considering the aforementioned optimal abrasion condition with the use of sulfuric acid as reactant showed excellent quality, recording a dry density of 2.4 and an absorption ratio of 2.94. Furthermore, it was discovered that gypsum, which is a reaction product occurring in the process, did not significantly affect the quality of aggregates. Furthermore, the test of mortar using this aggregate, when gypsum was included as a reaction product, showed no obvious retarding effect. However, the test sample containing gypsum recorded a long-term strength of 25.7MPa, whereas the test sample that did not contain gypsum posted a long-term strength of 29.4MPa. Thus, it is thought to be necessary to conduct additional research into the soundness and durability because it showed a clear reduction of strength.

Study on Upcycling Product Design Process using Recycled Textiles - Focusing on the Design Results of PBL(Problem Based Learning) Process- (재활용 텍스타일을 활용한 업사이클링 상품디자인 프로세스 연구 -문제중심학습(PBL) 과정의 디자인 결과물을 중심으로-)

  • Song, HaYoung
    • Journal of Fashion Business
    • /
    • v.25 no.5
    • /
    • pp.131-148
    • /
    • 2021
  • Upcycling is a sustainable way to recycle waste resources and solve the global problem of environmental pollution. Upcycling is now attracting attention as fiberization and the disposal of waste clothing have become a serious issue. However, the customer's willingness to purchase upcycled products should be increased by propagating that the product value of a reborn commodity is of high value; these products are meant for new purposes and prepared with recycled materials. In this study, we created 11 designer items by applying an eco-friendly concept in the design process of upcycled textiles and products. From 2020 to 2021, a PBL(Problem Based Learning) curriculum was taught in design planning classes. The final 11 design items were derived after developing an eco-friendly product design for upcycled textiles. These final items were as follows: 5 fashion bags, 3 dog products, 1 clothing, 1 fashion accessory, and 1 sanitary mask design. In order to develop only one aesthetic design idea for upcycling, we considered the following features: user-centered convenience, functionality, and practicality. Then, tie-dye, drawing, patchwork, and embroidery were used to create innovative design items. The product design of recycled materials is based on high functionality, waterproofing, and the use of organic natural materials. The results of this study indicate that the creative product design of upcycling has contributed to a sustainable and eco-friendly environment. Related research studies must be conducted for innovating the continuous design process of the future.

Evaluation of Rainwater Storage Block Using Recycled Aggregate By-product (순환골재 공정부산물을 활용한 빗물저류블록의 성능평가)

  • Kim, Ho-Kyu;Kim, Young-Ahn;Choi, Seung-Yong;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.167-173
    • /
    • 2018
  • In general, calcium is required for the reaction of blast furnace slag fine powder and fly ash. The by-products generated during the process of producing recycled aggregates have different calcium contents depending on the crushing stage and the possibility of using the process by-product as a concrete mixture is also different. In this study, the effect of the calcium content of the by-products on the compressive strength was investigated and the block was fabricated by using this. To utilize the by-products as an admixture, the calcium content was analyzed and the bending strength and surface temperature were measured according to the shape of the water storage block. As a result of this study, the possibility of making a block using recycled aggregate by-products was verified and arch type block was constructed to secure storage capacity and bending strength. Also, the surface temperature of the water storage block was reduced by $9^{\circ}C$ or more than that of the general permeable block.

Ecological Risk Assessment of Chemicals Migrated from a Recycled Plastic Product

  • Roh, Ji-Yeon;Kim, Min-Hyuck;Kim, Woo Il;Kang, Young-Yeul;Shin, Sun Kyoung;Kim, Jong-Guk;Kwon, Jung-Hwan
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.13.1-13.5
    • /
    • 2013
  • Objectives: Potential environmental risks caused by chemicals that could be released from a recycled plastic product were assessed using a screening risk assessment procedure for chemicals in recycled products. Methods: Plastic slope protection blocks manufactured from recycled plastics were chosen as model recycled products. Ecological risks caused by four model chemicals - di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), cadmium (Cd), and lead (Pb)-were assessed. Two exposure models were built for soil below the block and a hypothetic stream receiving runoff water. Based on the predicted no-effect concentrations for the selected chemicals and exposure scenarios, the allowable leaching rates from and the allowable contents in the recycled plastic blocks were also derived. Results: Environmental risks posed by slope protection blocks were much higher in the soil compartment than in the hypothetic stream. The allowable concentrations in leachate were $1.0{\times}10^{-4}$, $1.2{\times}10^{-5}$, $9.5{\times}10^{-3}$, and $5.3{\times}10^{-3}mg/L$ for DEHP, DINP, Cd, and Pb, respectively. The allowable contents in the recycled products were $5.2{\times}10^{-3}$, $6.0{\times}10^{-4}$, $5.0{\times}10^{-1}$, and $2.7{\times}10^{-1}mg/kg$ for DEHP, DINP, Cd, and Pb, respectively. Conclusions: A systematic ecological risk assessment approach for slope protection blocks would be useful for regulatory decisions for setting the allowable emission rates of chemical contaminants, although the method needs refinement.

Physical and Mechanical Properties of Concrete Using Recycled Aggregate and Industrial By-Products (재생골재와 산업부산물을 사용한 콘크리트의 물리.역학적 특성)

  • 성찬용;김영익
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.128-135
    • /
    • 2003
  • This study is performed to examine the physical and mechanical properties of concrete using recycled aggregate and industrial by-products. The test results show that the unit weight, compressive and flexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity are decreased with increasing the content of recycled aggregate. But, the absorption ratio is increased with increasing the content of recycled aggregate. The unit weight is 2,237∼2,307 kg/$\textrm{m}^3$, the absorption ratio is 2.96∼4.12%, the compressive strength is 415∼532 kgf/$\textrm{cm}^2$, the flexural strength is 75∼96 kgf/$\textrm{cm}^2$, the ultrasonic pulse velocity is 4,350∼4,949 m/s and the dynamic modulus of elasticity is $390\times10^3\;∼\;465\times10^3$ kg f/$\textrm{cm}^2$, respectively These recycled aggregate concrete can be used for high strength concrete.