• Title/Summary/Keyword: Recycled powder

Search Result 297, Processing Time 0.032 seconds

Study on the Development and Verification of Dry Manufacturing Technology for improving Quality of Recycled Fine Aggregate (순환잔골재 품질개선을 위한 건식생산기술의 개발 및 검증에 관한 연구)

  • Na, Chul-Sung;Choi, Hyeong-Gil;Kim, Young-Duck;Kwon, Soo-Kil;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.469-472
    • /
    • 2008
  • As recycled fine aggregate manufacturing technology with exceeding in economical efficiency, reduction efficiency of environmental load and quality improvement effect of recycled fine aggregate, it is to develop dry manufacturing system composed specific gravity separator of high-speed rotation impact type and centrifugal Force Powder Collector, etc. in this study. And it is to verify performance with evaluating quality of recycled fine aggregate. In consequence, it is identify that performance improvement effect of recycled fine aggregate by crushing recycled fine aggregate according to high-speed rotation impact, separating and collecting powder and minuteness dust according to centrifugal Force and mass defect, separating and reclaiming minuteness sand to mass defect.

  • PDF

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

An Experimental Study of the Recycled Cement Manufacturing Method for Improving the Material Quality (재생시멘트의 품질향상을 위한 제조방법에 관한 연구)

  • Oh, Sang-Gyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.143-149
    • /
    • 2004
  • The recycle of domestic waste concrete is, however, still in an early stage, and it has been only partially being used for the road fillers. As a counter-plan of activating recycled concrete, we have confirmed the hydration possibility of the waste concrete powder from the experiment on recycling the aggregate powder since 2000. Though that study, we have known that the strength is increasing when the baking time is longer, and baking temperature maintain in $700^{\circ}C$. Also, the quality is lowered because of the fine aggregate powder which has a bad influence on flowability & compression strength by adhesion of mortar on the aggregate face. Therefore, mortar and interfacial separation of aggregate are large in proper quality for concrete recycling is expected that affect. The purpose of this study is to investigate effective aggregate separation and to determine the most suitable production method controlling the duration of baking time for recycled cement from the compressive strength, X-ray diffraction and ingredient analysis test.

Novel green composite material manufactured by extrusion process from recycled polypropylene matrix reinforced with eucalyptus fibres and granite powder

  • Romulo Maziero;Washington M. Cavalcanti;Bruno D. Castro;Claudia V. Campo, Rubio;Luciano M.G. Vieira;Tulio H. Panzera;Juan C. Campos Rubio
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.119-131
    • /
    • 2023
  • The development of sustainable composites materials, from recycled polymeric materials and waste from the wood industry and stone processing, allows reducing the volume of these by-products, minimizing impacts on health and the environment. Nowadays, Polypropylene (PP) is the most recycled polymer in industry, while the furniture industry has increasingly used timber felled from sustainable forest plantations as a eucalypt. The powder tailing from the ornamental stone extraction and processing industry is commonly disposed of in the environment without previous treatment. Thus, the technological option for the development of composite materials presents itself as a sustainable alternative for processing and manufacturing industries, enabling the development of new materials with special technical features. The results showed that powder granite particles may be incorporated into the polypropylene matrix associated with short eucalyptus fibres forming green hybrid composites with potential application in structural engineering, such as transport and civil construction industries.

Studies on the durability evaluation of the Recycled Cement using Waste Cementitious Powder as Raw material. (폐미분말을 주원료로한 재생시멘트의 내구성능 평가에 관한 연구)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.3-4
    • /
    • 2015
  • Environmental load reduction and sustainable development one of the study's research into the available material is discharged, remove the coarse aggregate and fine aggregate from waste concrete and utilizing the remaining cement fine powder as an alternative raw material for limestone is the main raw material of cement developing playback cement that was the purpose. Physical over existing research and chemical quality was confirmed was evaluated for durability by promoting carbonation test, research studies on the durability evaluation insignificant. As honipyul within the aggregate differential lung fine powder increases carbonation resistance performance've found that increased sharply and, S0 showed fairly similar to the OPC. Therefore, the development within the technology research to separate fine aggregate discharge fully differential and waste fine powder is determined to be the development and use of the playback durability of the cement with the carbonation levels corresponding to the OPC if made.

  • PDF

Raw Materials Composition of Recycled Cement from Waste Concrete Powder (폐콘크리트 미분말을 활용한 재생시멘트의 원료조합)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.61-62
    • /
    • 2012
  • This study is for analyzing possibility of utilizing as cement from waste concrete. The scrapped fine powder which contains a large amount of hydrate of cement can supercede lime stone, and greenhouse gas reductions are expected. However, Fine Aggregate powder efficient separation technology development is essential for that limestone substitution effect and reduce greenhouse gas emissions in order to facilitate through the recycling of the scrapped fine powders.

  • PDF

CO2 Emissions Reduction by Utilization of Recycled Cement (재생시멘트 활용에 따른 CO2배출량 저감효과)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Hwang, Jong-Wook;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.78-79
    • /
    • 2013
  • A policy for recycling waste concrete has been extensively studied, but it is still lacking to recycle and reuse as a cementitious powder, and the property has big different depending on the aggregate rates. In this study, the amount of cement powder according to the internal properties of the aggregate were mixed. From as a result, Concrete Powder to play inside the aggregate composition of the cement composition CaO rigs that causes loss of power and strength reduction due to rising real water cement ratio will affect large.

  • PDF

The effect of wollastonite powder with pozzolan micro silica in conventional concrete containing recycled aggregate

  • Dinh-Cong, Du;Keykhosravi, Mohammad. H.;Alyousef, Rayed;Salih, Musab N.A.;Nguyen, Hoang;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Poi-Ngian, Shek
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.541-552
    • /
    • 2019
  • Construction development and greenhouse gas emissions have globally required a strategic management to take some steps to stain and maintain the environment. Nowadays, recycled aggregates, in particular ceramic waste, have been widely used in concrete structures due to the economic and environmentally friendly solution, requiring the knowledge of recycled concrete. Also, one of the materials used as a substitute for concrete cement is wollastonite mineral to decrease carbon dioxide (CO2) from the cement production process by reducing the concrete consumption in concrete. The purpose of this study is to investigate the effect of wollastonite on the mechanical properties and durability of conventional composite concrete, containing recycled aggregates such as compressive strength, tensile strength (Brazilian test), and durability to acidic environment. On the other hand, in order to determine the strength and durability of the concrete, 5 mixing designs including different wollastonite values and recovered aggregates including constant values have been compared to the water - cement ratio (w/c) constant in all designs. The experimental results have shown that design 5 (containing 40% wollastonite) shows only 6.1% decrease in compressive strength and 4.9% decrease in tensile strength compared to the control plane. Consequently, the use of wollastonite powder to the manufacturing of conventional structural concrete containing recycled ceramic aggregates, in addition to improving some of the properties of concrete are environmentally friendly solutions, providing natural recycling of materials.

Development of Standard for Evaluating Performance of Cementitious Scagliola using Statistical Research on Generation Amount of Waste Stone and Waste Stone Powder (우리나라 폐석재, 폐석분 발생량 통계 조사 및 이를 활용한 시멘트계 인조대리석 내·외장재 개발에 따른 성능검증 시험 표준안 개발)

  • Park, Wan-Goo;Kim, Su-Ryon;Heo, Neung-Hoe;An, Ki-Won;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Waste Stone and Waste Stone Powder are recycling some cyclic aggregate only. And the greater part of Waste Stone and Waste Stone Powder are reclaining or neglecting. To solve this problem, the government is proceeding development of cementitious scagliola using waste stone and waste stone powder. However, quality standard for cementitious scagliola using waste stone and waste stone powder has not been established. So cementitious scagliola using waste stone and waste stone powder has problem of quality assurance. Therefore in this study, developed standard for Evaluating Performance of cementitious scagliola using waste stone and waste stone powder through survey of international standard.

  • PDF