• Title/Summary/Keyword: Recycled polymer concrete

Search Result 63, Processing Time 0.022 seconds

A Study on Characteristics of Flexural Behavior of High-strength Polymer Concrete Beams Using Recycled PET (PET 재활용 고강도 폴리머 콘크리트보의 휨거동에 관한 연구)

  • Cho Byung-Wan;Park Jong-Hwa;Park Seung-Kook;Bea Sung-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.483-486
    • /
    • 2005
  • The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. Polymer concrete beams using unsaturated polyester resins based on recycled polyethylene terephthalate (PET) plastic waste were used in our study for grasping its structural behavior of static and fatigue. As a result of static test, Compression stress distribution of Polymer concrete indicates linear behavior such as triangles. Although polymer concrete is high strength materials, its ductility capacity is excellent. From the fatigue test results, There was almost no difference on flexural characteristics between before and after fatigue loading. Therefore, recycled PET polymer concrete remains excellent structural ability after fatigue loading.

  • PDF

Engineering Properties of Permeable Polymer Concrete Using Bottom Ash and Recycled Coarse Aggregate

  • Sung, Chan-Yong;Kim, Jong-Hyouk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.25-31
    • /
    • 2006
  • Permeable polymer concretes can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study was to explore a possibility of using bottom ash as filler and recycled coarse aggregate of industrial by-products for permeable polymer concrete. The tests carried out at $20{\pm}1^{\circ}C$ and $60{\pm}2%$ relative humidity. At 7 days of curing, unit weight, void ratio, compressive and flexural strength and coefficient of permeability ranged between $1,652{\sim}1,828kgf/m^{3},\;15{\sim}29+%,\;18.2{\sim}24.5\;MPa,\;6.4{\sim}8.4\;MPa\;and\;6.8{\times}10^{-2}{\sim}1.7{\times}10^{-1}\;cm/s$, respectively. It was concluded that the bottom ash and recycled coarse .aggregate can be used in the permeable polymer concrete.

A Proposal of Stress-Strain Relations Model for Recycled-PET Polymer Concrete under Uniaxial Stress (일축 하중을 받는 PET 재활용 폴리머콘크리트의 응력-변형률 모델의 제안)

  • Jo Byung-Wan;Moon Rin-Gon;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.767-776
    • /
    • 2004
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. Addition of silane increases compressive strength and postpeak ductility. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete

Mechanical Properties of Porous Concrete For Pavement Using Recycled Aggregate and Polymer (재생골재와 폴리머를 이용한 포장용 포러스 콘크리트의 역학적 특성)

  • Park Seung-Bum;Yoon Eui-Sik;Seo Dae-Seuk;Lee Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.595-602
    • /
    • 2005
  • The purpose of this study is to utilize recycled concrete aggregates as permeable pavement materials. This study evaluates mechanical properties and durability of porous concrete depending on mixing rates of recycled aggregates and polyme. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of recycled aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of polymer increased. As polymer was mixed $20\%$, national regulation of permeable concrete for pavement($8\%$ and 0.01cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of recycled aggregates increased but they increased a lot as mixing rate of polymer increased. Even when recycled aggregates were mixed $75\%\;with\;10\%$ polymer mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, regarding sliding resistance, BPN increased as mixing rate of recycled aggregates increased. But BPN decreased as polymer was mixed. Compared to crushed stone aggregates, abrasion resistance and freeze-thaw resistance decreased as mixing rate of recycled aggregates Increased. When polymer was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, $10\%$ mixture of polymer improved abrasion resistance and freeze-thaw resistance about $8.6\%$ and 3.8times respectively.

Strength Characteristics on Sulfuric Acid Corrosion of Recycled PET Polymer Concrete with Different Fillers (충전재 종류에 따른 PET재활용 폴리머콘크리트의 황산부식에 대한 강도 특성)

  • Jo Byung-Wan;Shin Kyung-Chul;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.499-504
    • /
    • 2005
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete Is drawing a strong interest as high-performance materials in the construction industry Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems Posed by plastics and save energy. An objective of this paper is to estimate the damage of sulfuric acid, through investigating recycled PET polymer concrete, immersed at sulfuric acid solution for 84 days. As a result of testing, recycled PET PC, used $CaCO_3$ as filler, makes a problem of appearance and strength if they are exposed for long term at corrosion environment. On the other hand, recycled PET PC, used fly-ash as filler, had less effect on decrease in weight and strength. Recycled PET PC is excellent chemical resistance, resulting in the role of unsaturated polyester resin which consists of polymer chain structure accomplishes bond of aggregates and filler strongly. Also, recycled PET PC, used fly-ash as filler, is stronger resistance of sulfuric acid corrosion than $CaCO_3$, because it is composed of $SiO_2$ and very strong glassy crystal structure. Therefore, recycled PET PC, used fly-ash as filler, is available under corrosion circumstances like sewer pipe or waste disposal plant.

Mechanical Characteristics of Polymer Concrete made with Recycled Plastic and Concrete Aggregates (폐플라스틱과 재생골재를 이용한 폴리머콘크리트의 역학적 특성)

  • Jo Byung-Wan;Park Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.324-327
    • /
    • 2004
  • In this paper, fundamental properties of Polymer Concrete made from unsaturated polyester resin based on recycled PET and recycled aggregate(RPC) were investigated. Resins based on recycled PET and recycled aggregate offer the possibility of low source cost for forming useful products, and would also help alleviate an environmental problem and save energy. The results of test for resin contents and recycled aggregate ratio are showed that the strength of RPC increases with resin contents relatively, however beyond a certain resin content the strength does not change appreciably, and the relationship between the compressive strength and aggregate contents at resin $9\%$ has a close correlation linearly whereas there is no correlation between the compressive strength and the flexural strength of RPC with recycled concrete aggregate.

  • PDF

Properties of Environmental Friendly Recycled Polymer Concrete (환경친화형 재생 폴리머 콘크리트의 특성)

  • Sung, Chan-Yong;Kim, Young-Ik;Youn, Joo-No
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.328-331
    • /
    • 2004
  • Recently, the study for practical construction application of recycled aggregate concrete is actively being proceeded, on the purpose of technical development for recycling on the construction waste concrete occurred at the time of destruction of building construction by the rapid increase of building wastes and exhaustion of natural aggregates. This study is performed to develop the permeable polymer concrete using recycled coarse aggregate and blast furnace slag for application of structures needed permeability. At 7 days of curing, compressive strength, flexural strength, water permeability and flexural load are in the ragge of $18\~20MPa,\;6\~7MPa,\;4.6\times10^{-2}\~6.9\times10^{-2}cm/s$ and $20\~25kN$, respectively. It is concluded that the recycled aggregate can be used in the permeable polymer concretes.

  • PDF

A Study on the Absorption Ratio Reduction of Recycled Coarse Aggregate for Concrete Coated by Polymer Dispersions (폴리머 디스퍼션으로 코팅한 순환굵은골재 흡수율 저감에 관한 연구)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.137-138
    • /
    • 2020
  • The purpose of this study is to evaluate the absorption ratio reduction of recycled coarse aggregate for concrete coated by polymer dispersions. The surface of recycled coarse aggregate is treated by polymer dispersion such as SBR and SAE with solid contents of 2%, 5% and 10%. From the test results, The minimum absorption ratio of the coated recycled coarse aggregate is 1.60 times smaller than that of uncoated recycle coarse aggregate. It is apparent that the absorption ratio of recycled coarse aggregate is much more improved by surface coating with polymer dispersions.

  • PDF

The Experimental study on setting shrinkage of polymer concrete with recycled PET (재활용 PET를 이용한 폴리머 콘크리트의 경화수축에 관한 실험적 연구)

  • 조병완;태기호;윤영한;박재욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.816-821
    • /
    • 2003
  • This paper deals with a reduction in the setting shrikage of polymer concrete using bentonite as shrinkage reducing agent. This study with polymer concrete using unsaturated polyester(UP) based on recycled PET waste was performed to verify the effect of various shrinkage reducing agent contents and the types of filler which are fly ash and $CaCo_3$. Setting stress induced by setting shrinkage was investigated in temrs of mechanical and chemical combination.

  • PDF

Mechanical Characteristics of Recycled PET Polymer Concrete with Demolished Concrete Aggregates (PET와 재생골재를 이용한 폴리머콘크리트의 역학적 특성)

  • Jo Byung-Wan;Lee Du-Wha;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.335-342
    • /
    • 2005
  • In this paper, fundamental properties of Polymer Concrete(PC), made from unsaturated polyester resin based on recycled PET and recycled aggregate were investigated. Mechanical properties include strength, modulus of elasticity, and chemical resistance. Resins based on recycled PET and recycled aggregate offer the possibility of low source cost for forming useful products, and would also help alleviate an environmental problem and save energy. The results of test for resin contents and recycled aggregate ratio we, first, the strength of Polymer Concrete made with resin based on recycled PET and recycled aggregate increases with resin contents relatively, however beyond a certain resin contents the strength does not change appreciably, Second, the relationship between the compressive strength and recycled aggregate ratio at resin $9\%$ has a close correlation linearly whereas there is no correlation between the compressive strength and the flexural strength of RPC with recycled aggregate ratio. Third, the effect of acid resistance at resin $9\%$ was found to be nearly unaffected by HCI, whereas the PC with $100\%$ recycled aggregate showed poor acid resistance. Unlike acid, alkali nearly does not seem to attack the RPC as is evident from the weight change and compressive strength. And last, In case of stress-strain curve of polymer concrete with $100\%$ of natural aggregate and $100\%$ recycled aggregate it is observed the exceptional behavior resulting in different failure mechanisms of the material under compression.