• 제목/요약/키워드: Recycled paper

검색결과 586건 처리시간 0.018초

강도 개선을 위한 분급된 OCC펄프의 고농도 펄핑 처리 기술 (High Consistency Pulping Treatment of Fractionated OCC Pulp for Improving Strength)

  • 허용대;이상길;이학래;윤혜정
    • 펄프종이기술
    • /
    • 제37권4호통권112호
    • /
    • pp.18-25
    • /
    • 2005
  • The mechanical strength is the prime requisite for linerboard and corrugating mediums. Repeatedly recycled OCC fibers show less suitable property for papermaking mostly due to hornification and reduced fiber length. To overcome these problems many researches including fractionation, enzymatic treatment, and chemical or mechanical treatments of fibers have been carried out. In this study, the effect of mechanical treatment by high consistency pulping on the characteristics of recycled fibers as well as mechanical properties of sheets were investigated. Results on the strength properties of handsheets made of recycled fibers that were treated to same freeness level by beating and high consistency pulping, respectively, showed that beating treatment was more efficient in improving strength. Drainage and recycling potential of the fibers treated by high consistency pulping, however, were expected to be superior to beating because fines content and fiber length didn't change significantly.

고지의 광학적특성 개선을 위한 in-situ 탄산칼슘처리기술의 적용 (Application of in-situ CaCO3 forming process on recycled fibers for optical property improvement)

  • 박동휘;이민우;이종규;안지환;서영범
    • 펄프종이기술
    • /
    • 제44권4호
    • /
    • pp.8-15
    • /
    • 2012
  • Optical property improvements for ONP (old newspaper) and OMG (old magazine) were attempted by application of in-situ $CaCO_3$ formation process on recycled fiber surfaces. Washing treatment of ONP and OMG resulted in 35~40% yield loss for around 6% brightness improvement. Washing plus bleaching process with $H_2O_2$ and FAS (formamidine sulfinic acid) improved brightness and ERIC values a little more with the same amount of yield loss as washing treatment. In-situ $CaCO_3$ formation method improved those optical properties much better than the washing plus bleaching method without loss of yield, and better than the case of adding high brightness PCC up to the same ash level. It can be said that the in-situ $CaCO_3$ formation method may be used as an effective alternative for upgrading optical properties of recycled fibers.

고지재생연구 (제4보) -고분자 전해질이 KOCC 재생지료에 미치는 영향 (Recycling of Wastepaper(IV) -The effect of polyelectrolytes on recycled KOCC stock-)

  • 김정은;안인숙;류정용;신종호;송봉근;오세균
    • 펄프종이기술
    • /
    • 제31권1호
    • /
    • pp.23-30
    • /
    • 1999
  • The effects of polyelectrolytes and enzyme, alone and in combination, were investigated in OCC recycling system. Four types of the polyelectrolytes based on acrylamide, cationic and anionic monomers were applied to the enzyme-treated KOCC stock to improve the strength and drainage properties of testliner. The polyelectrolytes used in this work were designed in terms of molecular weight and charge density. The water conditions used for recycling were also varied. The results showed that the hydrolytic action of enzyme gave reduced surface area and amorphous region of fiber, and as a result, the cationic polymer was lost apparently its flocculating power due to the reduced bonding site of fiber surface. When the hardness and conductivity of water had been controlled to the conditins of OCC paper mill, the application of amphoteric polyelectrolyte to the enzyme-treated recycled stock was the most effective with respect to the strength and drainage properties of testliner.

  • PDF

고지재생연구(제14조) -고온압착건조처리 골판지 원지의 강도에 미치는 양성 PAM과 미세분의 영향- (Recycling of Wastepaper(XIV) -The Effect of Amphoteric PAM and Fines on the Dry Strength Properties of Condebelt Press Dried Linerboards-)

  • 최병수;윤혜정;류정용;신종호;송봉근
    • 펄프종이기술
    • /
    • 제33권2호
    • /
    • pp.24-31
    • /
    • 2001
  • As a novel method to improve strength properties of recycled test liner, Condebelt press drying system was introduced and adopted into Korea. New press drying treatment could enhance the surface and strength properties in accordance with the increase of sheet density. However, Condebelt drying can not increase the density of repeatedly recycled test liner as much as that of virgin UKP and at the same density condition, the strength of Condebelt press dried UKP is greater than that of press dried test liner. In order to increase the strength of test liner, two attempts were tried in this study. First, addition of polyelectrolytes, dry strength agent was investigated with a view to promote the fiber bonding potential of reclaimed corrugated container pulp. Second, blending effect of fines were analyzed in an aims of increasing density and strength of test liner. The results were as follows; Even in the case of test liner densified by Condebelt press dryer, addition of amphoteric PAM as a dry strength agent was effective in increasing strength properties and so the effect of dry strength agent on improving bonding potential of recycled OCC fiber could be confirmed. As an appropriate addition level of amphoteric PAM, below 1% based on dry pulp weight was suggested. Different from virgin UKP, density of recycled test liner can be increased by the blending of OCC fines and strength properties also can be improved. However, excessive blending of OCC fines could result in decreasing of density and serious weakening of test liner. The best blending ration of fines in test liner can be determined as about 30%. Taking into account the fines content in general OCC pulp as 50%, excessive 20% of fines were supposed to be fractionated and removed in order to achieve the best strength of Condebelt press dried test liner.

  • PDF

고지의 효과적인 활용을 위한 in-situ 탄산칼슘 부착방식의 연구(2) - 탄산칼슘 첨가방식과 비교 및 반응온도에 따른 변화 - (Application of In-situ CaCO3 Formation Method for Better Utilization of Recycled Fibers (2) - Comparison with CaCO3 Addition Method and Effects of Temperature -)

  • 이민우;이영호;정재권;서영범
    • 펄프종이기술
    • /
    • 제46권5호
    • /
    • pp.27-34
    • /
    • 2014
  • In-situ $CaCO_3$ formation onto recycled wood pulp was studied to improve optical properties and ash attachment to the fiber furnish in papermaking. We controlled initial reaction temperature of in-situ $CaCO_3$ formation method from $30^{\circ}C$ to $50^{\circ}C$. It was found that the attachment of newly formed $CaCO_3$ to recycled fibers, old newspaper (ONP) in this case, was stronger than that of ground calcium carbonate (GCC, mean dia. $2.4{\mu}m$) addition case, but was not much different among those formed at different temperature. Morphologies of newly formed $CaCO_3$ were changed according to the reaction temperature. More aragonite shape was seen at higher temperature. In-situ $CaCO_3$ formation increased brightness and lowered ERIC value of ONP sheet greatly at the same level of ash contents when compared to GCC addition method, but gave equivalent ERIC and brightness when compared to those of the precipitated calcium carbonate (PCC) addition method. However, tensile strength of the handsheets of the in-situ $CaCO_3$ formation method were much greater than those of the PCC addition method.

백상지 슬러지의 소성처리에 의한 재활용에 관한 연구 (Studies on the recycling of sludge originated from a copy paper mill by calcination)

  • 조준형;최윤성;박규현
    • 펄프종이기술
    • /
    • 제42권1호
    • /
    • pp.1-6
    • /
    • 2010
  • Paper industry in Korea produces 14 million tons of paper and 1.3 million tons of sludge per year. Most of them has been treated by incineration, landfilling or ocean dumping. The sludge recycling to minimize the impact on the environment, so its importance is highlighted. In this study, in order to develop a new way of recycling the sludge, it was calcined and the recycled ash was tried to use as papermaking filler. Concerning the yield of calcium carbonate and the brightness and the rheology of the recycled calcination sludge, the optimum calcination conditions were found to be $600^{\circ}C$ and 12 hours. The sludge ash itself was not suitable for papermaking due to its color and low brightness. Thus the ash from the sludge was first mixed with a commercial filler and then utilized for papermaking. The effect of the increased hardness after high temperature treatment on wire abrasion was confirmed.

Nano-engineered concrete using recycled aggregates and nano-silica: Taguchi approach

  • Prusty, Rajeswari;Mukharjee, Bibhuti B.;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • 제3권4호
    • /
    • pp.253-268
    • /
    • 2015
  • This paper investigates the influence of various mix design parameters on the characteristics of concrete containing recycled coarse aggregates and Nano-Silica using Taguchi method. The present study adopts Water-cement ratio, Recycled Coarse Aggregate (%), Maximum cement content and Nano-Silica (%) as factors with each one having three different levels. Using the above mentioned control parameters with levels an Orthogonal Array (OA) matrix experiments of L9 (34) has selected and nine number of concrete mixes has been prepared. Compressive Strength, Split Tensile Strength, Flexural Tensile Strength, Modulus of Elasticity and Non-Destructive parameters are selected as responses. Experimental results are analyzed and the optimum level for each response is predicted. Analysis of 28 days CS depicts that NS (%) is the most significant factor among all factors. Analysis of the tensile strength results indicates that the effect of control factor W/C ratio is ranked one and then NS (%) is ranked two which suggests that W/C ratio and NS (%) have more influence as compared to other two factors. However, the factor that affects the modulus of elasticity most is found to be RCA (%). Finally, validation experiments have been carried out with the optimal mixture of concrete with Nano-Silica for the desired engineering properties of recycled aggregate concrete. Moreover, the comparative study of the predicted and experimental results concludes that errors between both experimental and predicted values are within the permissible limits. This present study highlights the application of Taguchi method as an efficient tool in determining the effects of constituent materials in mix proportioning of concrete.

콘크리트 재생 순환골재의 파쇄 효과에 따른 다짐 및 열저항 특성 연구 (Effect of Particle Breakage on Compaction and Thermal Resistivity of Concrete-based Recycled Aggregates)

  • 강성철;김경훈;위지혜;안태봉;이대수;최항석
    • 한국지반공학회논문집
    • /
    • 제31권10호
    • /
    • pp.17-28
    • /
    • 2015
  • 최근 친환경 건설에 대한 엄격한 규제와 가용한 천연골재 자원의 고갈에 따른 대안으로 전력구 되메움재로서 순환골재에 대한 관심이 급증하고 있다. 본 논문에서는 일반적인 되메움재인 강모래와 콘크리트 재생 순환골재를 대상으로 다짐에너지가 가해질 때, 발생하는 골재의 입자파쇄를 실내다짐시험을 통해 규명하였다. 적용된 다짐에너지 수준에서 일반 강모래는 입자파쇄가 미미하여 다짐 전후 골재의 다짐특성과 열저항의 변화가 매우 적었다. 반면에 일반 강모래에 비하여 순환골재는 재생과정에서 이미 입자에 큰 응력이 가해진 상태이므로 추가 다짐에너지에 의한 입자파쇄가 발생했다. 다짐에 의한 순환골재 입자파쇄는 세립분 양을 증가시켜 전반적으로 되메움재의 열저항을 감소시키고 입도곡선의 모양을 변화시켰다. 특히, 순환골재의 입자파쇄는 다짐에너지의 댐핑이 상대적으로 적은 저함수비 구간에서 더 뚜렷하게 발생하였다.

Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns

  • Dong, Jing;Ma, Hui;Zou, Changming;Liu, Yunhe;Huang, Chen
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.43-60
    • /
    • 2019
  • This paper presents a finite element model which can simulate the axial compression behavior of steel reinforced recycled concrete (SRRC) filled square steel tube columns using the ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of material in the columns. The nonlinear analysis of failure modes, deformation characteristics, stress nephogram, and load-strain curves of columns under axial loads was performed in detail. Meanwhile, the influences of recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, width thickness ratio of square steel tube, RAC strength and slenderness ratio on the axial compression behavior of columns were also analyzed carefully. It shows that the results of finite element analysis are in good agreement with the experimental results, which verifies the validity of the analytical model. The axial bearing capacity of columns decreased with the increase of RCA replacement percentage. While the increase of wall thickness of square steel tube, profile steel ratio and RAC strength were all beneficial to improve the bearing capacity of columns. Additionally, the parameter analysis of finite element analysis on the columns was also carried out by using the above numerical model. In general, the SRRC filled square steel tube columns have high bearing capacity and good deformation ability. On the basis of the above analysis, a modified formula based on the American ANSI/AISC 360-10 was proposed to calculate the nominal axial bearing capacity of the columns under axial loads. The research conclusions can provide some references for the engineering application of this kind of columns.