• Title/Summary/Keyword: Recycled of fine aggregate

Search Result 312, Processing Time 0.025 seconds

The Experimental Study on Engineering Properties of Recycled Concrete Using Recycled Fine and Coarse Aggregate (재생 잔골재 및 굵은골재를 사용한 재생콘크리트의 공학적 특성에 관한 실험적 연구)

  • Park Jong-Ho;Moon Hyung-Jae;Kim Young-Sun;Kim Young-Duk;Kim Jae-Hwan;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.169-172
    • /
    • 2004
  • Recently, because of the shortage of natural aggregate and the environment regulation of government, the application of recycled aggregate by solution method is observed according as the concern for the reuse of waste concrete. But because the quality of recycled aggregate is poor and quantitative quality judgment standard of recycled aggregate is fluffy, construction field application is difficult. Therefore, this study compares and investigates effect that quality of recycled aggregate influencing recycled concrete. As the result of this study, the more quality of aggregate increases, the more recycled concrete quality increased and high quality recycled aggregate generally displayed performance of similar level with nature aggregate. But, durability of recycled concrete using recycled aggregate appeared lower than concrete using natural aggregate without reference to aggregate quality.

  • PDF

Uniaxial Behavior of Reinforced Concrete Column with Recycled Fine Aggregate (순환잔골재를 치환한 철근콘크리트 기둥의 압축거동 특성)

  • Jang, Gwang-Soo;Kim, Yun-Su;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.5-8
    • /
    • 2008
  • The use of recycled aggregates is increasing due to problems of lack of natural aggregates. But there are no appropriate design recommendations and basic data for structural members using recycled fine aggregate concrete. This paper is to evaluate compression behavior of reinforced concrete column with displacement level of recycled fine aggregate. For these purpose, four recycled fine aggregate replacement levels (0%, 30%, 60%, 100%) were considered in this paper. Four columns with 400mm${\times}$400mm in cross section are tested under axial load. Experimental results were compared using current code(KCI2007). Compressive strength of reinforced concrete columns with recycled fine aggregate showed higher than that provided in KCI 2007. The KCI provision were conservative and subsequently can be used for design of reinforced recycled fine aggregate concrete column.

  • PDF

Effect of Binder Types and Replacement ratio on the Properties of Blast Slag Mortar Using the Recycled Fine Aggregates (결합재 종류 및 치환율 변화가 순환잔골재 사용 고로슬래그 모르타르의 품질에 미치는 영향)

  • Feng, Hai-Dong;Park, Kyung-Taek;Baek, Dae-Hyun;Kim, Dae-Gun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.77-78
    • /
    • 2011
  • This study is analysis of effect of binder types and replacement ratio on the properties of blast furnace slag mortar using the recycled fine aggregates. The results of the study were was follows. Compressive strength was increased according to an increase in replacement ratio of fine particle cement and gypsum. Absorption was reduced according to an increase in replacement ratio of fine particle cement and recycled aggregate fine powder.

  • PDF

Evaluation on the Applicability of Recycled Fine Aggregate to Precast Concrete Products (순환잔골재의 콘크리트 2차 제품 활용성 평가)

  • Kim, Sang-Chel;Park, Do-Kuk;Yoog, Keun-Chang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • While the amount of construction waste has not been changed much in discharge for last 10 years, the recycled resources refined from construction waste have been mainly applied to low-leveled one such as reclamation, back-fill, road base or subbase and so on. Thus this study addresses the applicability of recycled fine aggregate as a replaceable material in precast concrete. To evaluate the possibility, both of dry and wet processes were adopted as well as steam curing, widely used in the field for rapid producing. Most important experimental parameters were driven through preliminary experiments and were evaluated in terms of concrete properties. It is found from aggregate-replacement tests that all of consistency and strengths of concrete were decreased as the ratio of recycled fine aggregate increased, and the amount of decrease can be estimated using proposed equations. Though the recycled fine aggregate showed a decrease of concrete properties more or less, the applicability in large volume as a constituent of precast product was well noted from experimental results.

A Study on the Durability of Recycled Aggregate Using Polypropylene Fibers (폴리프로필렌을 혼합한 재생골재콘크리트의 내구성에 관한 연구)

  • 라재웅;신재인;양승배;구봉근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.419-424
    • /
    • 2000
  • The primary objectives of this study are to investigate the properties of strength and durability of recycled aggregate concrete was added polypropylene as variables and to fabricate fine concrete in some conditions. The variables are substitution ratios of recycled aggregate(0, 30, 50, 100%) and additions of polypropylene(0, 0.2, 0.5, 1.0%). Compressive strength test to investigate strength properties and freeze-thawing test and drying shrinkage test to durability properties were done. As the result of this study, When variables are substitution ratio(30%) of recycled aggregated and addition(0.5%) of polypropylene, fine concrete was fabricated.

  • PDF

Evaluation of Application of High Quality Recycled Fine Aggregate Manufacturing System by the Drying Specific Gravity Separation Method (건식비중분리법에 의한 고품질 재생잔골재 제조생산 시스템의 적용성 평가)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Na Chul-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.69-76
    • /
    • 2005
  • In this study, the high qualify recycled fine aggregate manufacturing system by the drying specific gravity separation method was evaluated. For the evaluation of the performance of the recycled aggregate, the engineering properties and durability of recycled aggregate has been tested. From the test results, the quality of recycled fing aggregates was improved by high quality recycled fine aggregate manufacturing system and satisfied with the quality standards of KS and JASS 5. Also, compressive and tensile strengths of recycled concrete show no critical difference caused by recycled fine aggregate replacement ratio. However, durability such as carbonation depth chloride ion penetration depth and drying shrinkage shows more deterioration than the concrete without recycled fine aggregate

Engineering Properties of the Non-Cement Mortar using the Fly ash from Combined Heat Power Plant and Recycled Fine Aggregate (열병합발전소 플라이애시와 순환잔골재를 사용한 무시멘트 모르타르의 공학적 특성)

  • Nam, Han-Kook;Lim, Jeong-Geun;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • In this study, to suggest the application method of recycled fine aggregate, the non-cement mortar was prepared and studied with the binders of blast furnace slag, fly ash, and fly ash from combined heat power plant. As a basic experiment, a series of tests was conducted to determine the potions of the binders and types of activator. When the binder was consisted with 20% of fly ash and 40% of fly ash from combined heat power plant, the highest strength of the mortar was obtained, and as an activator, the combination of sodium hydroxide 2.5%, and calcium hydroxide 7.5% showed the highest strength of the mortar. Therefore, this study focuses on engineering properties of mortar contains fly ash from combined heat power plant and recycled fine aggregate according to replacement ratio of recycled fine aggregate based on the optimum mix from the basic experiment. As a result, the best replacement ratio of recycled fine aggregate is 75%.

The Bond Behavior between Deformed bars and Recycled Fine Aggregate Concrete according to Bar Position. (철근 위치에 따른 이형철근과 순환잔골재 콘크리트의 부착거동)

  • You, Young-Chan;Jang, Yong-Heon;Lee, Min-Jung;Yun, Hyun-Do;Choi, Ki-Sun;Lee, Do-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1089-1092
    • /
    • 2008
  • The bond behavior between concrete and reinforcement is a important requirement for reinforced concrete constructions. For practical application, it is very important to study bond behavior of reinforcing bars in recycled fine aggregate concrete. Therefore, pull-out test in order to investigate the bond behavior between recycled fine aggregate concrete and deformed bars was performed. Recycled fine aggregate concrete replacement ratios (i.e., 0% and 100%) and positions of deformed bars (i.e., vertical and horizontal position) were considered as variables in this study. Test results were compared with the bond strength requirement recommended by CEB-FIP code. Based on the test results, It was found that the bond strength between the recycled fine aggregate concrete and deformed bars were influenced by both recycled fine aggregate concrete replacement ratios and positions of deformed bars. The reduction of bonded area at the soffit of horizontal reinforcement caused by concrete bleeding was observed in H type specimen. So, Only V type and HB specimen satisfied the bond strength requirement recommended by CEB-FIP code.

  • PDF

Engineering Characteristics of Resource-Cycling Mortar according to the Variation of Illite Replacement Ratio and Fine Aggregate Type (일라이트 치환률 및 잔골재 종류 변화에 따른 자원순환형 모르타르의 공학적 특성)

  • Kim, Min-Yoyng;Song, Yuan-Lou;Kim, Sang-Sup;Yoon, Won-Geun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.46-47
    • /
    • 2015
  • This study has analyzed the engineering characteristics of resource-cycling mortar according to the variation of fine aggregate type using illite with high development potentials by setting the goal as developing eco-friendly construction materials. As a result, while flow has increased if recycled fine aggregate and waste refractory are used separately or mixing them adequately in case of flow and compressive strength, the flow had somewhat declined followed by illite replacement. However, the possibility of such usage is determined to be adequate if used by mixing illite, recycled fine aggregate and waste refractory properly due to the dry shrinkage effect.

  • PDF

Quality Improvement of Recycled Fine Aggregate by Neutralization Reaction in Water (습식 중화반응에 의한 순환 잔골재의 품질 향상)

  • Kim, Ha-Suk;Kim, Jin-Man;Sun, Joung-Soo;Bae, Kee-Sun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.146-151
    • /
    • 2015
  • Recycled aggregate by the recycling construction waste has a lot of advantage such as the developing the alternative resource and protecting of environment. However, recycled aggregate is used as the low quality grade, because it is difficult to remove old mortar from aggregate. To use the recycled aggregate as high quality grade, it is important to develop the technology to produce the high quality recycled aggregate. To manufacture the high quality recycled aggregate, old mortar attached on the aggregates should be removed efficiently. Therefore, in this study, we suggested the optimum condition to remove old mortar effectively using sulfuric acid and low speed wet rotary mill for high quality recycled fine aggregate. The results shows that the recycled aggregate satisfy on the standards of KS F 2573 in density, absorption and solid volume, when adequate condition of sulfuric mole ratio and aggregate ratio are make.