• 제목/요약/키워드: Recycled asphalt pavement

검색결과 56건 처리시간 0.025초

무시멘트 첨가제를 활용한 상온 재활용 아스팔트 혼합물의 성능 분석 (Performance Evaluation of Cold Recycled Asphalt Mixtures with Asphalt Emulsion and Inorganic Additives)

  • 박창규;김경수;김원재;이현종
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.137-142
    • /
    • 2017
  • PURPOSES :The objective of this study is to evaluate the performance of asphalt mixtures containing inorganic additive and a high content of reclaimed asphalt pavement (RAP). METHODS : The laboratory tests verified the superior laboratory performance of inorganic additive compared to cement, in cold recycled asphalt mixtures. To investigate the moisture susceptibility of the specimens, tensile strength ratio (TSR) tests were performed. In addition, dynamic modulus test was conducted to evaluate the performance of cold recycled asphalt mixture. RESULTS :It was determined that NaOH solution mixed with $Na_2SiO_3$ in the ratio 75:10 provides optimum performance. Compared to Type B and C counterparts, Type A mixtures consisting of an inorganic additive performed better in the Indirect tensile strength test, tensile strength ratio test, and dynamic modulus test. CONCLUSIONS : The use of inorganic additive enhances the indirect strength and dynamic modulus performance of the asphalt mixture. However, additional experiments are to be conducted to improve the reliability of the result with respect to the effect of inorganic additive.

유리섬유 보강재를 이용한 재활용 아스팔트 혼합물의 물리적 특성에 관한 연구 (A Study on the Physical Properties of Recycled Asphalt Mixtures Using Glass Fiber Reinforcement)

  • 박기수;유평준
    • 한국도로학회논문집
    • /
    • 제20권4호
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : The objective of this study is to evaluate the physical properties of recycled asphalt mixtures reinforced with glass fiber. METHODS : Firstly, mixing design was conducted on recycled asphalt mixture for use of 50% recycled aggregate. Various laboratory tests were performed on four types of recycled asphalt mixtures with different glass fiber content to evaluate the physical properties. The laboratory tests include indirect tensile strength test, dynamic modulus test, Hamburg wheel tracking test and tensile-strength ratio to evaluate cracks, rutting and moisture resistance of mixtures. RESULTS : The indirect tensile strength of fiber reinforced glass increased about 139.4%. As a result of comparing the master curves obtained by the dynamic modulus test, the elasticity was low in the low temperature region and high in the high temperature region when the glass fiber was reinforced. The glass fiber contents of PEGS 0.3%, Micro PPGF 0.1% and Macro PPGF 0.3% showed the highest moisture resistance and rutting resistance. CONCLUSIONS : The test results show that use of glass fiber reinforcement can increase the resistance to cracking, rutting, and moisture damage of asphalt mixtures. It is also necessary to validate the long-term performance of recycled asphalt mixtures with glass fiber using full scale pavement testing and field trial construction.

재활용 도로재료의 회복탄성계수 산정을 위한 적용 모델의 평가 (Evaluation of Resilient Modulus Models for Recycled Materials)

  • 손영환
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.51-57
    • /
    • 2010
  • Many models have been used to represent the effects of confining stress, bulk stress, and shear stress on the value of the resilient modulus (Mr). This study was conducted to estimate Mr of the recycled materials such as recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) through the repeated load cyclic test. Also, two models were applied to estimation of Mr for comparing between measured Mr values and predicted Mr values. The first model (A-model) can provide a quick and easy estimation of the Mr based on the bulk stress, while the second model (N-model) includes not only the bulk stress but also the shear stress. Statistical analysis indicated that all results using the both of models are significant at a 95 % confidence level. Therefore, the both of models could be used as an effective prediction model of Mr for RCA and RAP. Especially, the Model 2 including the parameters of the bulk stress and the shear stress could give more reliable estimation at the high range of Mr values.

도로포장용 상온 재생 아스팔트 혼합물 개발 (A Development of Cold-Mixed Reclaimed Asphalt Pavement Materials)

  • 이종만;김낙석;김완상;홍은철
    • 한국방재학회 논문집
    • /
    • 제9권3호
    • /
    • pp.1-7
    • /
    • 2009
  • 순환골재를 도로의 기층재료나 보조기층용 골재로 활용하기 위하여 1980년대 초부터 미국과 유럽의 여러 나라에서 연구가 진행되었다. 우리나라에서도 1990년대 도심지 재개발 및 아파트 재건축의 증가로 건축폐기물이 다량으로 발생하여 이에 대한 대책을 마련하기 위한 방안으로 재활용 논의가 있었으나 실용화되지 못하였고 1994년 자원의 절약과 재활용 촉진에 관한 법률이 제정되어 일정 공사금액 이상의 건설사업자가 건설현장에서 배출되는 건설폐자재를 재활용화 하도록 규정한 이후에 구조물 채움재나 도로의 보조 기층재, 성토 및 복토용으로 활용되다가 최근에 포장재료로 활용하기 위한 연구가 수행되고 있다. 건설폐자재의 활용은 자원재활용과 함께 자연환경을 보호하고 부족한 골재난을 해소할 수 있으며 양질의 재료를 이용하여 포장의 공용성을 확보할 수 있어 여러 측면에서 효과적이다. 본 연구에서는 순환골재를 이용하여 자원을 재활용하고 에너지 소비를 절감 할 수 있는 상온 재생 아스팔트 혼합물 개발을 위한 연구 수행결과를 정리 하였다.

폐아스콘 순환골재 혼입율에 따른 알칼리활성화 채움재 상온 재생 아스팔트 혼합물의 특성 (Properties of Cold Recycled Asphalt Mixtures with Alkali-activated Filler according to Wasted Asphalt Aggregate Content)

  • 이민희;강석표
    • 한국건설순환자원학회논문집
    • /
    • 제6권3호
    • /
    • pp.199-206
    • /
    • 2018
  • 아스팔트의 재활용 기술은 화석연료 감소, 탄소 저감, 포장 성능 개선 등의 장점으로 인해 지난 20년간 선진국의 도로 건설 및 유지관리를 위해 개발되고 적용되고 있다. 상온 재생 아스팔트 혼합물은 상온에서 폐아스콘 순환골재를 물과 유화 아스팔트와 함께 혼합하는 역청재료이다. 본 논문은 폐아스콘 순환골재 혼입율에 따라 알칼리 활성화 채움재를 사용한 상온 재생 아스팔트 혼합물의 특성을 검토하고자 하였다. 그 결과 폐아스콘 순환골재의 혼입율이 증가할수록 상온 재생 아스팔트 혼합물의 마샬 안정도가 감소하고 공극률이 증가하였다. 또한, GR에서 정하고 있는 상온 재생 아스팔트 혼합물의 입도 기준을 모든 골재 혼합 조건에서 만족하였다.

Effect of silica fume on mechanical properties of concrete containing recycled asphalt pavement

  • Katkhuda, Hasan N.;Shatarat, Nasim K.;Hyari, Khaled H.
    • Structural Engineering and Mechanics
    • /
    • 제62권3호
    • /
    • pp.357-364
    • /
    • 2017
  • This paper presents the results of a study that investigated the improvement of the mechanical properties of coarse and fine recycled asphalt pavement (RAP) produced by adding silica fume (SF) with contents of 5%, 10%, and 15% by total weight of the cement. The coarse and fine natural aggregate (NA) were replaced by RAP with replacement ratio of 20%, 40% and 60% by the total weight of NA. In addition, SF was added to NA concrete mixes as a control for comparison. Twenty eight mixes were produced and tested for compressive, splitting tensile and flexural strength at the age of 28 days. The results show that the mechanical properties decrease with as the content of RAP increases. And the decrease in the compressive strength was more in the fine RAP mixes compared to the coarse RAP mixes, while the decrease in the splitting tensile and flexural strength was almost the same in both mixes. Furthermore, using SF enhances the mechanical properties of RAP mixes where the optimum content of SF was found to be 10%, and the mechanical properties enhancement of coarse RAP were better than fine RAP mixes. Accordingly, the RAP has the potential to be used in the concrete pavements or in other low strength construction applications in order to reduce the negative impact of RAP on the environment and human health.

Self-Consolidating Concrete Incorporating High Volume of Fly Ash, Slag, and Recycled Asphalt Pavement

  • Mahmoud, Enad;Ibrahim, Ahmed;El-Chabib, Hassan;Patibandla, Varun Chowdary
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권2호
    • /
    • pp.155-163
    • /
    • 2013
  • The use of sustainable technologies such as supplementary cementitious materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is imperative to qualify and implement such mixtures in practice, if the required specifications of their intended application are met. This paper presents the results of a laboratory investigation of self-consolidating concrete (SCC) containing sustainable technologies. Twelve mixes were prepared with different combinations of fly ash, slag, and recycled asphalt pavement (RAP). Fresh and hardened concrete properties were measured, as expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. The addition of RAP to mixes showed a consistent effect, with a drop in strength after 3, 14, and 28 days as the RAP content increased from 0 to 50 %. However, most of the mixes satisfied SCC fresh properties requirements, including mixes with up to 50 % RAP. Moreover, several mixes satisfied compressive strength requirement for pavements and bridges, those mixes included relatively high percentages of SCMs and RAP.

긴급보수용 개질 유화아스팔트 고비율 순환골재를 사용한 상온 아스팔트 혼합물의 성능 평가 (Performance Evaluation of High-RAP Asphalt Mixtures using Rapid-Setting Polymer-Modified Asphalt Emulsion)

  • 권봉주;허재민;한용진;이석근
    • 한국도로학회논문집
    • /
    • 제17권2호
    • /
    • pp.21-30
    • /
    • 2015
  • PURPOSES : The purpose of this study was to evaluate the performance of rapid-setting polymer-modified asphalt mixtures with a high reclaimed asphalt pavement (RAP) content. METHODS: A literature review revealed that emulsified asphalt is actively used for cold-recycled pavement. First, two types of rapid-setting polymer-modified asphalt emulsion were prepared for application to high-RAP material with no virgin material content. The quick-setting polymer-modified asphalt mixtures using two types of rapid-setting polymer-modified asphalt emulsion were subjected to the following tests: 1) Marshall stability test, 2) water immersion stability test and 3) indirect tensile strength ratio test. RESULTS AND CONCLUSIONS : Additional re-calibration of the RAP was needed for laboratory verification because the results of analyzing RAP aggregates, which were collected from different job sites, did not deviate from the normal range. The Marshall stability of each type of binder under dry conditions was good. However, the Type B mixtures with bio-additives performed better in the water immersion stability test. Moreover, the overall results of the indirect tensile strength test of RAP mixtures with Type B emulsions exceeded 0.7. Further research, consisting of lab testing and on-site application, will be performed to verify the possibility of using RAP for minimizing the closing of roadways.