• Title/Summary/Keyword: Recycled aggregate

Search Result 927, Processing Time 0.028 seconds

Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete (인천지역의 콘크리트 폐기물을 재생골재로 활용한 재생콘크리트의 강도특성)

  • Jang, Jea-Young;Jin, Jung-Hoon;Cho, Gyu-Tae;Nam, Young-Kug;Jeon, Chan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • This paper is to determine the possibility of re-using waste concrete from Incheon city area. The strength test was conducted with five aggregate compounds which was replaced a natural aggregate with recycled aggregate. After checking the physical characteristics of recycled aggregate compounds, the mix design of recycled concrete was conducted. For the relatively comparison between natural and recycled compounds, while the unit aggregate weight was changed, other conditions were fixed. The freezing and thawing test which included fly-ash and super-plastezer were performed to check the durability and workability when recycling waste concrete. In the physical characteristics of recycled aggregate, it was found that the specific gravity of recycled coarse aggregate and recycled fine aggregate satisfied the first grade of recycle specification(KS), and all compounds of recycled aggregate also satisfied the second grade of absorption specification, Especially up to the 50% substitution of recycled aggregate is equal to or a bit lower than that of convention aggregate. In comparison with conventional concrete, the recycled concrete is lower than maximum by 7% in compressive strength decreasing rate after freezing-thawing test. From now, although most of recycled concrete was used to the building lot, subgrade, asphalt admixture, through the result. It was proved that possibility of re-using recycled aggregate as the substructure of bridge, retaining wall, tunnel lining and concrete structure which is not attacked the drying shrinkage severely.

Analysis of the Economic Effect of the Construction Industry and the Cost-benefit Analysis of the Recycled Aggregate Production Industry According to the Use of High-quality Recycled Aggregate (고품질 순환골재 활용에 따른 건설 산업의 경제적 효과 및 순환골재 생산 산업의 비용 편익 분석)

  • Choi, Won-Young;Jeon, Chan-Soo;Kim, Sang-Heon;Kim, Tae-Hyoung;Jeon, Duk-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.483-491
    • /
    • 2021
  • The purpose of this study is to analyze the economic effect of the use of recycled aggregate on the construction industry and the effect of increasing the value of the recycled aggregate production industry on the premise of supporting quality assurance technology to promote the high-quality use of recycled aggregate. Accordingly, the production cost of ready-mixed concrete that can be obtained through the use of high-quality recycled aggregate is analyzed according to the recycled aggregate application rate recommended in the recycled aggregate quality standard, The economic effect of general ready-mixed concrete and recycled aggregate-applied rea dy-mixed concrete industry wa s a na lyzed by identifying the domestic rea dy-mixed concrete industry sca le a nd the ra te of satisfaction of recycled aggregate volume, and a cost-benefit analysis method was used to examine the benefits of high-quality recycled aggregate production and sales. As a result, the production cost of ready-mixed concrete is reduced by 2.3~16.2% depending on the application rate, the economic effect of the use of recycled aggregate on the construction industry is about 106.8~142.6 billion KRW, and the effect of increasing the value of the recycled aggregate production industry generated about 1.22 times the benefit.

An Evaluation of the Compressive Strength of Recycled Aggregate Concrete by the Non-Destructive Testing (비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가)

  • Chung, Heon-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.63-70
    • /
    • 2004
  • The objective of this study is to evaluate the compressive strength of recycled aggregate concrete by the non-destructive testing. Main experimental variables were the replacement level of recycled aggregate and blast-furnace slag, which were divided into two series according to recycled aggregate maximum size. Test results showed that a recycled aggregate had a significant influence on the non-destructive testing results, such as rebound number, Ultrasonic pulse velocity, and frequency. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results.

Stress-strain relationship for recycled aggregate concrete after exposure to elevated temperatures

  • Liang, Jiong-Feng;Yang, Ze-Ping;Yi, Ping-Hua;Wang, Jian-Bao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.609-615
    • /
    • 2017
  • In this paper, the effects of elevated temperatures on the strength and compressive stress-strain curve (SSC) of recycled coarse aggregate concrete with different replacement percentages are presented. 90 recycled coarse aggregate concrete prisms are heated up to 20, 200, 400, 600, $800^{\circ}C$. The results show that the compressive strength, split tensile strength, elastic modulus of recycled aggregate concrete specimens decline significantly as the temperature rise. While the peak strain increase of recycled aggregate concrete specimens as the temperature rise. Compared to the experimental curves, the proposed stress-strain relations for recycled aggregate concrete after exposure elevated temperatures can be used in practical engineering applications.

An Experimental Study on the Replacement Proportion of Recycled Aggregate Effecting on the Engineering Properties of Recycled Concrete (재생골재콘크리트의 공학적 특성에 미치는 재생골재 혼합조건의 영향에 관한 실험적 연구(제2보 경화콘크리트의 성상 및 비파괴 시험 적용성에 관하여))

  • 남상일;이상수;류광일;박정일;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.22-25
    • /
    • 1993
  • The study of recycled aggregate concrete in which demolition waste is utilized to produce aggregate for new concrete, can contribute to the solution of two problems, The first is the shortage of aggregate from river, and the second is the waste disposal problem. In comparison with natural aggregate concrete, recycled aggregate concrete shows reductions in compressive strength , tensile strength, vending strength , shear strength and increases in drying shrinkage and creep. Recycled aggregate concrete may also be less durable due to increase in porosity and permeability. The purpose of this study is to investigate and analyze the variation of engineering properties according to replacement proportion of recycled aggregates and applicability of non-destructive test in the gardened recycled concrete.

  • PDF

An Experimental Study on the Replacement Proportion of Recycled Aggregate Effecting in the Engineering Properties of Recycled Concrete (Part 1, Experimental Program and Fluidity Performance of Fresh Concrete (재생골재콘크리트의 공학적 특성에 미치는 재생골재 혼합조건의 영향에 관한 실험적 연구 (제 1보, 실험계획 및 아직 굳지 않은 유동화 특성을 중심으로 ))

  • 최진성;윤병수;임정수;심진만;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.16-21
    • /
    • 1993
  • The study of recycled aggregate concrete in which demolition waste is utilized to produce aggregate for new concrete, can contribute to the solution of two problems. The first is the shortage of aggregate from river, and the second is the waste disposal problem. In comparison with natural aggregate concrete, recycled aggregate concrete shows reductions in compressive strength, tensile strength , vending strength, shear strength and increases in drying shrinkage and creep. Recycled aggregate concrete may also be less durable due to increase in porosity and permeability. Therefore, the purpose of this study is to analyze the applicability of recycled concrete in the influence of a substitute ratio of recycled sand gravel.

  • PDF

A Basic Study for evaluation on the Elastic Modulus of Recycled Aggregate Concrete by using Composite Model (복합이론에 의한 순환골재 콘크리트의 탄성계수 평가에 관한 기초적 연구)

  • Kim, Hyun-Wook;Kim, Ji-Yoon;Kim, Wan-ki;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.73-74
    • /
    • 2012
  • The elastic modulus of recycled aggregate concrete (RAC) can be evaluated by using composite models with experiment. In this study, Hashin's composite model was adapted to evaluate elastic modulus considering physical properties of recycled coarse aggregate (RCA) that mortar is attached. Elastic modulus testes for cement paste, mortar and recycled coarse aggregate concrete were carried out considering W/C and recycled coarse aggregate content rate. As a result, the elastic modulus of RAC was evaluated comparing with both experiment results and the existing estimation formula. Those can be used for further studies as a preliminary data.

  • PDF

Effect of high temperature on the bond performance between steel bars and recycled aggregate concrete

  • Yan, Lan-Lan;Liang, Jiong-Feng;Zhao, Yan-gang
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2019
  • The use of recycled aggregate concrete for the purpose of environmental and resource conservation has gained increasing interest in construction engineering. Nevertheless, few studies have reported on the bonding performance of the bars in recycled aggregate concrete after exposed to high temperatures. In this paper, 72 pull-out specimens and 36 cubic specimens with different recycled coarse aggregate content (i.e., 0%, 50%,100%) were cast to evaluate the bond behavior between recycled aggregate concrete and steel bar after various temperatures ($20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$). The results show that the recycled aggregate concrete pull-out specimens exhibited similar bond stress-slip curves at both ambient and high temperature. The bond strength declined gradually with the increase of the temperature. On the basis of a regression analysis of the experimental data, a revised bond strength mode and peak slip ratios relationship model were proposed to predict the post-heating bond-slip behavior between recycled aggregate concrete and steel bar.

Monitoring on Compressive Strength and Carbonation of Reinforced Concrete Structure with 100% Recycled Aggregate (순환골재를 100% 사용한 철근콘크리트 구조물의 압축강도 및 탄산화 진행 모니터링)

  • Lee, Sang-Yun;Kim, Gyu-Yong;Yoon, Min-Ho;Na, Chul-Sung;Lee, Sang-Kyu;Shin, Sung-Gyo;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.383-389
    • /
    • 2019
  • The supply of natural aggregate for concrete has been difficult, and the amount of construction waste has been continuously increasing. Therefore, the necessity of using recycled aggregate made of construction waste as aggregate is rised. Therefore, many studies on the characteristics of concrete using recycled aggregate have been made and positive studies have been reported mainly in recent studies. A study on the chlorides binding effect of the mortar with recycled coarse aggregate has been reported. However, due to the user's perception of waste, most of the recycled aggregate currently produced is used only for low value-added products. In order to improve the recognition of recycled aggregate and the user's perception of recycled aggregate concrete, long-term monitoring of the structure with 100% recycled aggregate was conducted to confirm the applicability of the recycled aggregate concrete.

A Study on the Property Estimation of Recycled Coarse Aggregate and Characteristic of Recycled Aggregate Concrete Using the Surface Coated Treatment Method (표면처리방법을 이용한 순환 굵은골재의 물성 평가 및 순환골재 콘크리트의 특성 연구)

  • Kim, Nam Wook;Kim, Hyeok Jung;Bae, Ju Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.603-609
    • /
    • 2008
  • The recycled aggregates which were produced from the waste concretes have the disadvantages of inferior properties for natural aggregate. Therefore, in order to reuse the recycled aggregate it must be solved to improve the quality of recycled aggregate. In this study, the quality of recycled aggregate was improved by the surface treatment method using the colloidal silica solution. And, in order to examine the possibility of reusing the surface coated recycled aggregate in constructing concrete structures, we studied the mechanical properties and durability of the concrete using the surface coated recycled aggregates and the other concrete.