• 제목/요약/키워드: Recycled Gypsum

검색결과 62건 처리시간 0.032초

폐석고보드지의 재활용 방안 탐색을 위한 기초연구 (Study on the recycling of gypsum board paper generated from construction wastes)

  • 이지영;윤경태;김철환;성용주;김병호;임기백;김선영
    • 펄프종이기술
    • /
    • 제45권3호
    • /
    • pp.20-26
    • /
    • 2013
  • We investigated practical methods of using recycled gypsum board paper in the paper industry. Gypsum board paper is used to produce construction gypsum board, and can be recycled through the recycling process of construction wastes. The experiments were carried out in two ways: One was the substitution of recycled gypsum board papers for KOCC, and the other was the use of recycled gypsum board paper powder. Recycled gypsum board paper was not disintegrated easily, but high temperature and the use of chemicals were able to improve their disintegration. The physical properties of handsheets made of the pulp of recycled gypsum board paper exhibited the same performance level as those made from KOCC except in the parameter of compressive strength. The powder of recycled gypsum board paper was manufactured using a grinder and handsheets were made with the powder and KOCC. The bulk was increased, but the strength properties were decreased by the addition of the powder.

Application of Recycled Gypsum on Alkali Soil for Improving Agricultural Productivity in China

  • Akio, Tokuumi;Tsureyasu, Yanagi;Sun, Yi;Gao, Yushan;Zhao, Xiezhe
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.102-105
    • /
    • 2001
  • Gypsum has been known as a prominent material for improving alkali soil, and this material can be supplied easily in large scale by recycling waste gypsum plasterboard from construction and demolition sites in advanced countries. In April 2000, in the part of western Jilin Province in China, where alkali soil spread vastly, we conducted a cultivating experiment of corn and rice after treating with granule recycled waste gypsum at six alkali soil fields which total area were 14000$m^2$. We confirmed that pH of soil decreased in a short period and alkali soil changed soft a desirable condition for farm work, and furthermore, gypsum caused to accelerate the growth of a plant, both corn and rice.

  • PDF

Quality of Recycled Fine Aggregate using Neutral Reaction with Sulfuric Acid and Low Speed Wet Abrader

  • Kim, Ha-Seog;Lee, Kyung-Hyun;Kim, Jin-Man
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.490-502
    • /
    • 2012
  • The use of recycled aggregate, even for low-performance concrete, has been very limited because recycled aggregate, which contains a large amount of old mortar, is very low in quality. To produce a high-quality recycled aggregate, removing the paste that adheres to the recycled aggregate is very important. We have conducted research on a complex abrasion method, which removes the component of cement paste from recycled fine aggregate by using both a low-speed wet abrasion crusher as a mechanical process and neutralization as chemical processes, and well as research on the optimal manufacturing condition of recycled fine aggregates. Subsequently, we evaluated the quality of recycled fine aggregate manufactured using these methods, and tested the specimen made by this aggregate. As a result, it was found that recycled fine aggregates produced by considering the aforementioned optimal abrasion condition with the use of sulfuric acid as reactant showed excellent quality, recording a dry density of 2.4 and an absorption ratio of 2.94. Furthermore, it was discovered that gypsum, which is a reaction product occurring in the process, did not significantly affect the quality of aggregates. Furthermore, the test of mortar using this aggregate, when gypsum was included as a reaction product, showed no obvious retarding effect. However, the test sample containing gypsum recorded a long-term strength of 25.7MPa, whereas the test sample that did not contain gypsum posted a long-term strength of 29.4MPa. Thus, it is thought to be necessary to conduct additional research into the soundness and durability because it showed a clear reduction of strength.

Experimental study on chemical activation of recycled powder as a cementitious material in mine paste backfilling

  • Liu, Yin;Lu, Chang;Zhang, Haoqiang;Li, Jinping
    • Environmental Engineering Research
    • /
    • 제21권4호
    • /
    • pp.341-349
    • /
    • 2016
  • To improve the utilization rate of construction waste as mine backfilling materials, this paper investigated the feasibility of using recycled powder as mine paste backfilling cementitious material, and studied the pozzolanic activity of recycled construction waste powder. In this study, alkali-calcium-sulfur served as the activation principle and an orthogonal test plan was performed to analyze the impact of the early strength agent, quick lime, and gypsum on the pozzolanic activity of the recycled powder. Our results indicated that in descending order, early strength agent > quick lime > gypsum affected the strength of the backfilling paste with recycled powder as a cementitious material during early phases. The strength during late phases was affected by, in descending order, quick lime > gypsum > early strength agent. Using setting time and early compressive strength as an analysis index as well as an extreme difference analysis, it was found that the optimal ratio of recycled powder cementitious material for mine paste backfilling was recycled powder:quick lime:gypsum:early strength agent at 78%:10%:8%:4%. X-ray diffraction analysis and scanning electron microscope were used to show that the hydration products of recycled powder cementitious material at the initial stages were mainly CH and ettringite. As hydration time increased, more and more recycled powder was activated. It mainly became calcium silicate hydrate, calcium aluminate hydrate, etc. In summary, recycled powder exhibited potential pozzolanic activities. When activated, it could replace cementitious materials to be used in mine backfill.

석고종류 및 소각장애시 치환율 변화에 따른 고로슬래그 미분말 활용 무시멘트 모르타르의 공학적 특성 (Engineering Properties of Zero-Cement Mortar with Variation Replacement Ratio of Incineration Waste Ash and Gypsum)

  • 박준희;황금광;김준호;조만기;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.222-223
    • /
    • 2014
  • In this study, industrial by-products including blast furnace slag, incineration ash and waste gypsum were used with recycled fine aggregates to manufacture the zero-cement mortar.The replacement ratio of dihydrate gypsum and anhydrite gypsum was fixed as 0 and 10%, the replacement ratio fo WA1 was fixed as 0.5% and 1.0%, respectively. It could be identified that when the replacement of gypsum was 10% and WA1 of 1.0%, the strength could be in the range of normal strength.

  • PDF

무수석고와 소각장애시의 치환율 변화에 따른 고로슬래그 미분말 활용 무 시멘트 모르타르의 기초적특성 (Fundamental Properties of Zero-Cement Mortar with Variation Replacement Ratio of Incineration Waste Ash and Gypsum)

  • 여량량;김준호;백병훈;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.242-243
    • /
    • 2014
  • In this study, industrial by-products including blast furnace slag, incineration ash and waste gypsum were used with recycled fine aggregates to manufacture the zero-cement mortar. The replacement ratio of anhydrite gypsum was fixed as 0, 10%, 20% the replacement ratio fo WA1 was fixed as 0.5% and 1.0%, respectively. It could be identified that when the replacement of gypsum was 20% and WA1 of 1.0%, the strength could be in the range of normal strength.

  • PDF

결합재 종류 및 치환율 변화가 순환잔골재 사용 고로슬래그 모르타르의 품질에 미치는 영향 (Effect of Binder Types and Replacement ratio on the Properties of Blast Slag Mortar Using the Recycled Fine Aggregates)

  • 풍해동;박경택;백대현;김대건;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.77-78
    • /
    • 2011
  • This study is analysis of effect of binder types and replacement ratio on the properties of blast furnace slag mortar using the recycled fine aggregates. The results of the study were was follows. Compressive strength was increased according to an increase in replacement ratio of fine particle cement and gypsum. Absorption was reduced according to an increase in replacement ratio of fine particle cement and recycled aggregate fine powder.

  • PDF

고로슬래그 미분말의 초기강도 향상을 위한 석고 종류 및 첨가량 검토 (Investigation on the Ratio and Type of Gypsum for Early Strength Improvement of Blast Furnace Slag Powder)

  • 정용;유정훈;신재경
    • 한국건설순환자원학회논문집
    • /
    • 제5권4호
    • /
    • pp.106-113
    • /
    • 2010
  • 본 연구에서는 고로슬래그 미분말 제조시 혼입되는 최적의 석고량을 도출하고, 분말도 및 제조환경에 관한 제반물성을 실험적으로 검토함으로서 고로슬래그 미분말의 품질향상 방안과 사용성 확대를 위한 기초자료로 활용하고자 하였다. 실험결과, 유동성은 석고첨가량이 높을수록 저하하는 경향이었고 천연석고와 석회 소성슬러지의 경우에는 첨가량 2.6%이상에서 KS 기준을 만족하지 못하였다. 압축강도는 인산석고, 탈황석고, 불산석고의 화학석고가 초기 강도가 높게 형성되었고 석회 소성슬러지와 석회석 미분말은 강도발현에 큰 영향이 없는 것으로 분석되었다. 분말도가 높아지면 유동성이 감소하고 압축강도는 증가하기 때문에 석고첨가량을 2.0%이하로 관리하는 것이 경제적일 것으로 판단된다. 저온에서는 불산석고, 고온에서는 탈황석고가 유동성 확보에 유리한 것으로 나타났고 동절기인 $10^{\circ}C$에서는 2.6%, 서중기인 $30^{\circ}C$에서는 2.0%이하로 사용하는 것을 적정 사용량으로 결정하였다.

  • PDF

이수석고가 고로슬래그 미분말 활용 무시멘트 모르타르의 기초물성에 미치는 영향 (Effect of Adding Gypsum in Blast-Furnace-Based Mortar's Fundamental Properties)

  • 여량량;김준호;박준희;황금광;백병훈;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.137-138
    • /
    • 2013
  • Nowadays, research about using recycled aggregate as alkali activator has been investigated. By the mechanism of Alkali activation, blast furnace slag's potential hydraulis property would be activated. Thee application of this technique is considered as fit for low strength concrete, so it's suitable in concrete secondary production such as bricks and blocks. Aside alkali activator, sulfate could also activate blast furnace slag's potential hydranlis property. In this research, gypsum(CaSO4·2H2O)has been added with blast furnace slag. Fundamental experiment such as flow and strength has been tested to evalnate effect of gypsum's activation property.

  • PDF

순환자원을 활용한 환경친화형 콘크리트 블록 제조 (Manufacturing of Eco-Friend Concrete Block using Recycled Materials)

  • 이재진;한천구
    • 한국건설순환자원학회논문집
    • /
    • 제5권4호
    • /
    • pp.389-394
    • /
    • 2017
  • 본 연구는 콘크리트 블록을 생산하는 공장에서 경제적이면서 환경 친화적인 블록을 생산하기 위해 산업부산물 자원을 효과적으로 이용하는 방안에 관한 것이다. 즉, BS 3종에 일라이트, 탈황석고 및 폐내화물울 치환하여 종전에 연구되었던 결과에서 양호한 것으로 밝혀진 몇 개 변수를 Mock-up 시험성격으로 실제 생산라인에서 호안블록을 생산하여 그 특성을 분석하므로써 최적 조합을 확정하고자 한다. 실험결과 압축강도, 흡수율, 내동해성 및 수질영향의 pH 관점에서 고려하면 BS 3종에 정제 탈황석고 5% 치환 및 여기에 골재로서 일라이트를 1% 치환한 배합이 최적인 것으로 분석되었다. 그러나 일라이트는 시멘트 보다 고가이므로 경제적인 측면까지도 고려하면 BS 3종에 5%의 정제 탈황석고를 결합재로 치환하는 배합이 최적 조합인 것으로 밝혀졌다.