• Title/Summary/Keyword: Recycled Aggregates

Search Result 493, Processing Time 0.022 seconds

Fresh and hardened properties of expansive concrete utilizing waste aluminum lathe

  • Yasin Onuralp Ozkilic;Ozer Zeybek;Ali Ihsan Celik;Essam Althaqafi;Md Azree Othuman Mydin;Anmar Dulaimi;Memduh Karalar;P. Jagadesh
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.595-608
    • /
    • 2024
  • In this study, aluminum lathe waste was used by replacing aggregates in certain proportions in order to obtain expansive concrete using recycled materials. For this reason, five different aluminum wastes of 1%, 2%, 3%, 4% and 5% were selected and also reference without aluminum waste was produced. Based on the mechanical tests conducted, which included slump, compression, splitting tensile, and flexural tests, it was evident that the workability of the material declined dramatically once the volume ratio of aluminum exceeded 2%. As determined by the compressive strength test (CST), the CS of concrete (1% aluminum lathe wastes replaced with aggregate) was 11% reducer than that of reference concrete. It was noted that the reference concrete's CS values, which did not include aluminum waste, were greater than those of the concrete that contained 5% aluminum. When comparing for splitting tensile strength (STS), it was observed that the results of STS generally follow the parallel inclination as the CS. The reduction in these strengths when 1% aluminum is utilized is less than 10%. These ratios modified 18% when flexural strength (FS) is considered. Therefore, 1% of aluminum waste is recommended to obtain expansive concrete with recycled materials considering minimum loss of strength. Moreover, Scanning Electron Microscope (SEM) analysis was performed and the results also confirm that there was expansion in the aluminum added concrete. The presence of pores throughout the concrete leads to the formation of gaps, resulting in its expansion. Additionally, for practical applications, basic equations were developed to forecast the CS, STS, and FS of the concrete with aluminum lathe waste using the data already available in the literature and the findings of the current study. In conclusion, this study establishes that aluminum lathe wastes are suitable, readily available in significant quantities, locally sourced eco-materials, cost-effective, and might be selected for construction using concrete, striking a balance among financially and ecological considerations.

Recycling Plan for Waste Concrete Fine Aggregate as Materials of Anti-Frost Layer and Sub-Base Layer (도로의 동상방지층 및 보조기층재로서 폐콘크리트 잔골재의 재활용 방안)

  • Lee, Dong-Wook;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • In this study, a recycling plan for waste concrete fine aggregate as fill material was researched by investigating environmental engineering properties. It is noted that the environmental influence of waste concrete fine aggregate is little since chemical level is satisfied the waste management standard. Waste concrete fine aggregate is not suitable for materials of anti-frost layer and sub-base layer since the particle-size distribution and engineering properties are not partially satisfied the quality standard. However, waste concrete fine aggregate can be recycled as materials of anti-frost layer and sub-base layer if we improve the engineering properties by mixing bigger aggregates than maximum particle size (5 mm) more than 25 percent of total weight.

Properties of Reformed Electric Arc Furnace Slag as Cement Admixtures (용융개질 전기로슬래그의 시멘트 혼화재로서 특성)

  • Kim, Kee-seok;Bae, In-kook;Seo, Joo-beom;Choi, Jae-Seok;Lee, Yoon-kyu;Kim, Hyung-seok
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.31-37
    • /
    • 2015
  • Ground granulated blast-furnace slag (GGBFS) which is by-product of steel industry has been recycled as a cement admixture though the other steel slags are used as aggregates. In this study, the electric arc furnace slag (EAFS) was used as a cement admixture after the reduction of iron oxide in the slag at the interface of molten slag and water quenching. Consequently, the reformed EAFS (REAFS) had higher grindability than that of granulated blast furnace slag. And in mortar tests, the strength properties of specimens using REAFS were 98% of plain specimens of GGBFS upto 20% replacement ratio of GGBFS with REAFS.

Experimental Study on Physical and Mechanical Properties of Concrete with fine Waste Glass (잔골재로 폐유리를 혼입한 콘크리트의 물리.역학적 특성에 관한 실험적 연구)

  • 박승범;조청휘;김정환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.184-191
    • /
    • 2001
  • Recently, as industrialization is rapidly growing and the standard of life is rising, the quantities of waste glasses have been hastily increased and most of them are not recycled but abandoned. It cause some problems such as the waste of natural resources and environmental pollution. Therefore, this study was conducted basic experimental research to analyze the possibilities of recycling of waste glasses(crushed waste glasses outbreaking from our country such as amber, emerald-green, flint and mixed) as fine aggregates for concrete. Test results of fresh concrete, slump and compacting factors decrease because grain shape is angular and air content increase due to involving small size particles so much in waste glasses. Also compressive, tensile and flexural strengths decrease with increase of the content of waste glasses. In conclusion, the content of waste glasses below 30% is reasonable and usage of pertinent admixture is necessary to obtain workability and air content.

Material Properties of Fast hardening Polymer Mortar by Fine Aggregate Types and Replacement Ratio (잔골재 종류 및 치환율에 의한 속경성 폴리머 모르타르의 재료 특성)

  • Shin, Seung-Bong;Kim, Gyu-Yong;Nam, Jeong-Soo;Shin, Kyoung-Su;Lee, Bo-Kyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.145-151
    • /
    • 2019
  • The Physical performance of use materials was evaluated to improve durability of fast-paced repair mortar used at rapid construction sites. The fastening performance and basic performance were evaluated by substituting ferronickel grinding slag residues, rapid settlement, and EVA-based polymer for mortar. As a result, the compressive strength, flexural strength and adhesion strength were increased due to the use of FS Fine Aggregate and RS Fine Aggregate. The chloride ion promotion test of fast-polymer mortar kept the chloride inhibitory performance from 7 days to 28 days when fNS was used less than 50%. Durability degradation due to the use of FS Fine Aggregate and RS Fine Aggregate has not been found, and it is believed that further consideration of economic and long-term durability will be required for use as alternative Aggregate for construction and civil engineering.

Evaluation of the Feasibility of Eliminating Non-point Source Pollution Using Waste Sewage Sludge Bio-blocks (하수슬러지를 이용한 Bio-block의 비점오염물질 제거 가능성 평가)

  • Han, Sang Moo;Kim, Do Hyeong;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.363-368
    • /
    • 2021
  • On the assessment results of the non-point source pollutant removability of bio-block using waste sewage sludge, at the reactor's initial operation stage, the removal efficiency of COD was slightly unstable. However, after the reactor was stabilized, the COD removal efficiency was higher in the reactor filled with bio-blocks compared to the reactor filled with broken stones. In terms of nitrogen and phosphorus, their removal efficiency was unstable at the initial stage of the reactor operation. This phenomenon was investigated through the bio-block elution experiments. Results indicated that nitrogen and phosphorus were eluted from the bio-blocks affecting their removal at the initial operation. Furthermore, based on elution tests conducted after the dry ashing of the waste sewage sludge, part of the nitrogen and phosphorus was eluted similar to the bio-block elution test results, although considerable amounts of nitrogen and phosphorus were reduced compared to the sludge cake. Prior to the use of the waste sewage sludge bio-blocks as a filter medium to remove non-point source pollutants, a stabilization period of 10 days was required. After the stabilization process, results showed similar characteristics as general aggregates. Moreover, to use the bio-block as a filter medium for the non-point pollutant removal, the filling ratio of 75% was the most suitable as it resulted in the highest nitrogen removal efficiency after the stabilization. The results of this study suggested that waste sewage sludge can be suitably recycled as a mixed raw material for the bio-blocks, with satisfactory application as a filter medium in artificial wetlands, stormwater runoff problems, stream water pollutants to eliminate non-point source pollutants.

A Study on the Improvement of the Legal System Related to Electro-Optical Oxidation Slag

  • Kim, Hyeok-Jung;Lee, Young-Woo;Park, Se-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.299-303
    • /
    • 2020
  • Currently, electric furnace oxide slag is mostly used for soil or road use due to its nature. Although electric furnace oxidation slag is an industrial byproduct, not a circulating aggregate, the shortcomings of electric furnace oxidation slag are gradually being resolved due to the development of technology, and it is said that electric furnace oxidation slag is enough to be used as aggregates in light of research and technology conditions outside of Korea. However, there are difficulties in expanding construction and application, given that the current standard for electric furnace oxid slag only defines recycling purposes and does not have specific regulations. Therefore, institutional supplementation is needed to utilize oxidation slag as electricity. In this study, the laws and system related to oxidation slag by electricity are reviewed, laws related to recycled aggregate are examined, and measures for improvement are proposed.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.

A Model for Lifecycle CO2 Assessment of Building Structures Considering the Mixture Proportions of Concrete (콘크리트 배합설계를 고려한 구조물의 전과정 CO2평가 모델)

  • Yang, Keun-Hyeok;Seo, Eun-A
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.201-210
    • /
    • 2014
  • The present study proposes a phased model to assess the lifecycle $CO_2$ amount of concrete structures. The considered system boundary is from cradle to recycling, which includes constituent material, transportation, batching and mixing in ready-mixed concrete plant, use and demolition of structure, and crushing and recycling of demolished concrete. The $CO_2$ uptake of concrete by carbonation during lifetime (40 years) of a structure and the recycling life (20 years) after demolition is estimated using a simple approach generalized to predict the carbonation depth from the surfaces of concrete element and recycled aggregates. Based on the proposed phased model, a performance evaluation table is realized to straightforwardly examine the lifecycle $CO_2$ amount of concrete structures. The proposed model demonstrates that the contribution of ordinary portland cement (OPC) to lifecycle $CO_2$ emission of the concrete structure occupies approximately 85%. Furthermore, the $CO_2$ uptake is estimated to be approximately 15~18% of the lifecycle $CO_2$ emissions of concrete structures, which corresponds to be 19~22% of the emissions from OPC production. Overall, the proposed $CO_2$ performance table is expected to be practically useful as a guideline to determine the $CO_2$ emission or uptake at each phase of concrete structures.

Unconfined Compressive Strength of Reduced Slag-Mixed Clay (환원슬래그 혼합점토의 일축압축강도 특성)

  • Cho, Minjae;Yoon, Yeowon;Kim, Jaeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.33-39
    • /
    • 2012
  • With the increase of steel production research interest on the recycling of slag as a by-product also increases steadily. Currently in Korea a lot of researches on blast-furnace slag have been made. However, the researches on the steel slag have been rarely made. Also, a research of steel slag, especially the use of oxidation furnace slag as aggregates for concrete progress, is performing actively, but the research results on the furnace slag are almost nothing. Recently, the research about the furnace slag as backfill material and embankment material confirmed the possibility of the clay soil amendment. Therefore, the object of this study is to review the possibility as civil engineering materials for soil improvement and to find the optimum mixture ratio of furnace slag. This research analyzed the ingredient component of the reduced slag by SEM, XRF, XRD tests and examined the strength increase using unconfined compression tests when the clay and reduced slag are mixed each other. Through this test, the definite strength increase is confirmed according to the mixture of the reduced slag and the possibility of soil improvement is also confirmed based on this result. The object of the study is both utilizing the by-product for civil engineering purpose and effective recycling by the application of the furnace slag for soil improvement.