• Title/Summary/Keyword: Recycled Aggregate Ratio

Search Result 363, Processing Time 0.032 seconds

Properties of Cold Recycled Asphalt Mixtures with Alkali-activated Filler according to Wasted Asphalt Aggregate Content (폐아스콘 순환골재 혼입율에 따른 알칼리활성화 채움재 상온 재생 아스팔트 혼합물의 특성)

  • Lee, Min-Hi;Kang, Suk-Pyo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.199-206
    • /
    • 2018
  • Due to the advantages of less raw materials and fossil fuel consumption, lower carbon footprint, and the capability of pavement performance improvement, the recycling technology of asphalt is developed and applied for road rehabilitation and construction in the western countries over the past two decades. Cold recycled asphalt mixtures are bituminous materials normally made by mixing recycled aggregate from wasted asphalt with an asphalt emulsion and water at room temperature. This paper aims at investigating the properties of cold recycled asphalt mixture with alkali-activated filler according to wasted asphalt aggregate content. As a result, as the content of wasted asphalt aggregate increased, the marshall stability of cold recycled asphalt mixture decreased and void ratio increased. Also, grading curves for cold recycled asphalt mixture as specified in GR criteria were satisfied in all aggregate mixing conditions regardless of the wasted asphalt aggregate content.

Properties of Fresh Concrete with Recycled Coarse and Fine Aggregates (순환(循環)굵은/잔골재(骨材)를 사용한 굳지 않은 콘크리트의 특성(特性))

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Lee, Do-Heun
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.20-26
    • /
    • 2009
  • The objective of this study is to investigate the properties of fresh concrete with recycled coarse and fine aggregates. Four different kinds of aggregate with natural, recycled aggregates were prepared. The concrete mixtures were produced with test parameters of replacement ratio of recycled aggregate. The properties of the fresh concrete were measured by means of slump and air content according to elapsed time. Quality control method to maintain the constant total mixing water for recycled aggregate concrete was suggested. The all concrete mixtures were produced with approximately the same slump on the job site after an hour. Test results indicated that compressive strength of concrete with constant slump is not affected by the replacement ratio of recycled aggregate. Also the practical way for the quality control of recycled aggregate concrete is to maintain the constant total mixing water.

Compressive Strength and Resistance to Freezing and Thawing of Recycled Aggregate Concrete Containing Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 혼입한 순환골재 콘크리트의 압축강도 및 동결융해 저항성)

  • Bae, Suho;Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.469-475
    • /
    • 2013
  • The purpose of this experimental research is to estimate compressive strength and resistance to freezing and thawing of recycled aggregate concrete containing ground granulated blast furnace slag. For this purpose, concrete specimens according to substitution ratio of recycled aggregate were made for different replacement ratio of ground granulated blast furnace slag(GGBFS), and then compressive strength and resistance to freezing and thawing were evaluated for those. It was observed from the test results that compressive strength at 28 days of recycled aggregate concrete containing GGBFS of 20% was much more excellent than plain concrete and when air content of concrete was maintained 4 to 6%, influence of substitution ratio of recycled aggregate and replacement ratio of GGBFS on resistance to freezing and thawing was little up to 300 cycles of freezing and thawing.

Properties of Polymer Permeability Concrete Using Recycled Aggregate (재생골재를 활용한 폴리머 투수콘크리트의 특성)

  • Kim, Young-Ik;Sung, Chan-Yong;Choi, Sang-Leung;Joung, Duck-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.415-418
    • /
    • 2003
  • This study is performed to examine properties of polymer permeability concrete using recycled coarse aggregate and blast furnace slag for application of structures needed permeability. Tests for compressive strength, flexural strength and pulse velocity with replacement ratio of recycled coarse aggregate are performed. As a result, compressive strength, flexural strength and coefficient of permeability of polymer permeability concrete containing recycled coarse aggregate are in the range of $180{\sim}200kgf/cm^2,\;58{\sim}64kgf/cm^2\;and\;4.6{\times}10^{-2}{\sim}6.9{\times}10^{-2}cm/s$, respectively. Compressive strength, flexural strength and pulse velocity of polymer concrete containing crushed stone only are $192kgf/cm^2,\;65kgf/cm^2\;and\;6.1{\times}10^{-2}cm/s$, respectively. Accordingly, recycled coarse aggregate is expected that can be utilizing as an aggregate of polymer permeability concrete.

  • PDF

An Experimental Study on the Shear Behavior of Reinforced Concrete Beams using Recycled Coarse Aggregate (재생굵은골재를 사용한 철근콘크리트 보의 전단거동에 관한 실험연구)

  • 이명규;서정인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.521-526
    • /
    • 2000
  • The structural behavior of the members using recycled coarse aggregate is investigated in this papers. The members considered this study are subjected to shear ad bending simultaneously. A series of test beam specimens using recycled coarse aggregate is made for the structural test. These specimens are manufactured using the concrete for the compressive strength of 280kg/$\textrm{cm}^2$ with recycled aggregate ratio of 0%, 20%, 40%, 60%, 80% of total aggregate volume, respectively. The main object of this test is to investigate the influence of the using recycled aggregate to the cracking strength of the member subjected to flexure and shear and the post cracking behavior.

  • PDF

Bond capacity with absorption of recycled coarse aggregate in RC beams (순환 굵은 골재 흡수율에 따른 RC보의 부착 성능에 대한 실험적 연구)

  • Lee, Hyun-Ah;Lim, Ji-Youg;Lee, Jung-Mi;Park, Cho-Bum;Ryu, Deck-Huyn;Kim, Kil-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.97-100
    • /
    • 2008
  • In order to recycled wast concrete which is occurred from demolition of the old building, it is effective that the recycled aggregate used as structural concrete aggregate. For used recycled aggregate with structural concrete, the structural capacity must be confirmed. This Study investigated bond capacity which follows in difference of absorption of the aggregate between rebar and concrete. Test results show that there are not a difference of bond strength and slip behavior according to absorption ratio of natural and recycled coarse aggregate.

  • PDF

A Study on the Strength Properties and Life Cycle Assessment of Recycled Fine Aggregate Concrete (순환잔골재 혼입 콘크리트의 강도 특성 및 전과정 환경영향 평가 연구)

  • Choi, Won-Young;Kim, Sang-Heon;Lee, Sea-Hyun;Jeon, Chan-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • The purpose of this study is to confirm the strength characteristics of concrete according to the mixing ratio of recycled fine aggregates and to use it as basic data for the use of recycled fine aggregates in concrete. For this purpose, the target design compression strength was set at 27MPa. Considering practical use of recycled aggregate, the mixing ratio of recycled fine aggregate was set at 0, 30, 60, and 100%, and the unconfined concrete and hardened concrete were tested. The LCA method was used to evaluate the environmental impact of recycled fine aggregate concrete, and the effectiveness of recycled fine aggregate in the production of concrete was verified.

A Study on the Durability of Recycled Aggregate Using Polypropylene Fibers (폴리프로필렌을 혼합한 재생골재콘크리트의 내구성에 관한 연구)

  • 라재웅;신재인;양승배;구봉근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.419-424
    • /
    • 2000
  • The primary objectives of this study are to investigate the properties of strength and durability of recycled aggregate concrete was added polypropylene as variables and to fabricate fine concrete in some conditions. The variables are substitution ratios of recycled aggregate(0, 30, 50, 100%) and additions of polypropylene(0, 0.2, 0.5, 1.0%). Compressive strength test to investigate strength properties and freeze-thawing test and drying shrinkage test to durability properties were done. As the result of this study, When variables are substitution ratio(30%) of recycled aggregated and addition(0.5%) of polypropylene, fine concrete was fabricated.

  • PDF

Effect of Recycled Fine Aggregate Quality on Strength Properties of Concrete (순환잔골재 품질에 따른 콘크리트의 강도특성)

  • Jeon, Esther;Yun, Hyun-Do;Jang, Yong-Heon;Choi, Ki-Sun;Bae, Kee-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.609-612
    • /
    • 2008
  • This study investigated effect of recycled fine aggregate quality on strength properties of concrete. Some investigations have been carried out to study the strength properties of recycled aggregate concrete. But these have some limitation due to small-scale test in the laboratory. Therefore concrete using this study were fabricated by ready-mix concrete. Variables were quality of recycled fine aggregate(high and low quality) and replacement ratio of 0%, 30%, 60%, 100%(high quality), 35, 70%(low quality). The change of air content of recycled aggregate concrete were similar to natural aggregate concrete. Replacement ratio of recycled aggregate was not necessarily correlated with compressive strength and modulus of rupture of recycled aggregate concrete.

  • PDF

Engineering Properties of Permeable Polymer Concrete Using Bottom Ash and Recycled Coarse Aggregate

  • Sung, Chan-Yong;Kim, Jong-Hyouk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.25-31
    • /
    • 2006
  • Permeable polymer concretes can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study was to explore a possibility of using bottom ash as filler and recycled coarse aggregate of industrial by-products for permeable polymer concrete. The tests carried out at $20{\pm}1^{\circ}C$ and $60{\pm}2%$ relative humidity. At 7 days of curing, unit weight, void ratio, compressive and flexural strength and coefficient of permeability ranged between $1,652{\sim}1,828kgf/m^{3},\;15{\sim}29+%,\;18.2{\sim}24.5\;MPa,\;6.4{\sim}8.4\;MPa\;and\;6.8{\times}10^{-2}{\sim}1.7{\times}10^{-1}\;cm/s$, respectively. It was concluded that the bottom ash and recycled coarse .aggregate can be used in the permeable polymer concrete.