• Title/Summary/Keyword: Recycle system

Search Result 357, Processing Time 0.029 seconds

Water Quality Control in the Semiclosed Culture System Growing a Flounder, Paralichthys Olivaceus (반폐쇄 순환여과식 넙치양식장의 수질제어에 관한 연구)

  • YANG Byung-Soo;LEE Heon-Mo;JEONG Byung-Gon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.197-204
    • /
    • 1992
  • A comparative evaluation of water quality in the existing semiclosed fish culture system was made to improve the system management. From the comparison of water quality between the flow-through mode and the recycle mode of the semiclosed system, the malfunctioning of the settling channel deteriorated water quality and reduce the nitrification rate in the recycle mode. The peak concentrations of COD, $PO_4-P$ and SS in the fish tanks appeared just after feeding, and then decreased to normal levels within two hours. However, the $NH_4-N$ concentration increased slightly after two hours of feeding in the recycle mode. The water exchange rate was directly related to the water quality in the semiclosed fish culture system.

  • PDF

System Development of a 100 kW Molten Carbonate Fuel Cell IV(System commisioning for operation (100 kW급 용융탄산염 연료전지 시스템 개발 IV(MCFC 시스템 시운전))

  • Lim, Hee-Chun;Ahn, Kyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1681-1683
    • /
    • 2005
  • The molten carbonate fuel tell(MCFC) is endowed with the high potential especially in future electric power generation industry by its own outstanding characteristics. KEPCO(KEPRI) started a 100 kW MCFC system development program in 1993 and has been executed 100kW system develpilot plant successfully completed first phaseopment by 2005 on the basis of successful results of 25kW system development. In this program, the components and mechanical structure for 100 kW stack and system construction were completed on last year and now system pre-commissioning was being executed. A 100 kW MCFC power plant was constructed at the site of Boryeong Thermal Power Plant. A 100 kW MCFC system has characterized as a high pressure operation mode, $CO_2$ recycle, and externally reforming power generation system. The 100 kW MCFC system consisted with stacks which was made by two 50 kW sub-stacks, 90 cells with 6,000 cm2 active area and BOP including a reformer, a recycle blower, a catalytic burner, an inverter, and etc. The system will be operated under 3 atm pressure condition and expected to last over 5,000 hours by the end of this year.

  • PDF

Treatment of Food Waste Leachate using Lab-scale Two-phase Anaerobic Digestion Systems (실험실 규모 2상 혐기성 소화를 이용한 음식물 쓰레기 탈리액의 처리)

  • Heo, Ahn-Hee;Lee, Eun-Young;Kim, Hee-Jun;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1231-1238
    • /
    • 2008
  • This study was performed to evaluate the treatability of food waste leachate using lab-scale two-phase anaerobic digestion system. Effects of influent pH, hydraulic retention time (HRT), and recycle of methanogenic reactor effluent to the thermophilic acidogenic reactors were investigated. For methanogenic reactors, effects of internal solids recycle and temperature were studied. Performance of the acidogenic reactors was stable under the conditions of influent pH of 6.0 and HRT of 2 d with the recycle of methanogenic reactor effluent, and acidification and VS removal efficiency were about 30% and 40%, respectively. Up to the organic loading rate (OLR) of 7 g COD/L/d, effluent SCOD values of mesophilic and thermophilic methanogenic reactors either lower or kept the same with the internal solids recycle. Also, decreasing tendency in specific methane production (SMP) due to the organic loading increase became diminished with the internal solids recycle. Mesophilic methanogenic reactors showed higher TCOD removal efficiency and SMP than thermophilic condition under the same OLR as VSS was always higher under mesophilic condition. In sum, thermophilic acidogenesis-mesophilic methanogenesis system was found to be better than thermophilic-thermophilic system in terms of both organic removal and methane production.

100 kW급 용융탄산염 연료전지 발전시스템 개발

  • Im, Hui-Cheon;Kim, Do-Hyeong;Seo, Hye-Gyeong;Park, Seong-Yeon;An, Gyo-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.140-148
    • /
    • 2005
  • The molten carbonate fuel cell (MCFC) is endowed with the high potential especially in future electric power generation industry by its own outstanding characteristics. KEPCO (KEPRI) started a 100 kW MCFC system development program in 1993 and has been executed 100kW system develpilot plant successfully completed first phaseopment by 2005 on the basis of successful results of 25kW system development. In this program, the components and mechanical structure for 100 kW stack and system construction were completed on last year and now system pre - commissioning was being executed. A 100 kW MCFC power plant was constructed at the site of Boryeong Thermal Power Plant. A 100 kW MCFC system has characterized as a high pressure operation mode, CO2 recycle, and externally reforming power generation system. The 100 kW MCFC system consisted with stacks which was made by two 50 kW sub-stacks, 90 cells with 6,000 cm2 active area and BOP including a reformer, a recycle blower, a catalytic burner, an inverter, and etc. The system has been operated from 13th of September on this year and produced 50 kW AC under atmospheric pressure condition and expected to operate by the end of this year.

  • PDF

Continuous Production of Succinic Acid Using an External Membrane Cell Recycle System

  • Kim, Moon-Il;Kim, Nag-Jong;Shang, Longan;Chang, Yong-Keun;Lee, Sang-Yup;Chang, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1369-1373
    • /
    • 2009
  • Succinic acid was produced by continuous fermentation of Actinobacillus succinogenes sp. 130Z in an external membrane cell recycle reactor to improve viable cell concentration and productivity. Using this system, cell concentration increased to 16.4 g/l at the dilution rate $0.2\;h^{-1}$, up to 3 times higher than that of batch culture, and the volumetric productivity of succinic acid increased up to 6.63 g/l/h at the dilution rate $0.5\;h^{-1}$, 5 times higher than that of batch fermentation. However, in the continuous culture using a high dilution rate, operational problems including severe membrane fouling and contamination by lactic acid producer were observed. Another succinic acid producer, Mannheimia succiniciproducens MBEL55E, was also utilized in this system, and the cell concentration and productivity of succinic acid at the dilution rate of $0.3\;h^{-1}$ were found to be above 3 and 2.3 times higher, respectively, compared with those obtained at the dilution rate of $0.1\;h^{-1}$. These observations give a deep insight into the process design for a continuous succinic acid production by microorganisms.

The Phenol Wastewater Treatment by Candida tropicalis in Fluidized Bed Biofilm Reactor (유동층 반응기에서 Candida tropicalis 균에 의한 페놀함유 폐수처리에 관한 연구)

  • Kim, Woo Sik;Youm, Kyung Ho;Kim, Eung Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 1985
  • The effects of initial concentration, flow rate, and recycle ratio on the removal efficiency of phenol were studied in a tapered fluidized bed reactor packed with activated carbon which was attached with Candida tropicalis. The optimum conditions of Candida tropicalis were showed that pH was 7.0 and temperature was $30^{\circ}C$, and the specific growth rate of Candida tropicalis was satisfied with the Monod equation up to 500 mg/L of phenol, and beyond it the inhibition of substrate was found. According to the increases of initial concentration and flow rate, the removal efficiency was decreased, as the recycle ratio was increased, the removal efficiency was increased. In the case of flow rate of 10mL/sec and the recycle ratio of 2, the removal efficiency was 90% above for the all of initial concentration. The removal rate of phenol was the first order reaction in this system, and the rate equation of reaction was as follows.

  • PDF

Removal of Nitrogen and Phosphorus from Municipal Wastewater by a Pilot-scale BNR Process (파이롯트 규모의 BNR 공법에 의한 도시하수의 질소 및 인 제거)

  • Kim, Young-Chur
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.589-599
    • /
    • 2007
  • This study was conducted to investigated the removal efficiency of BOD and nutrient for the treatment of low strength municipal wastewater by a biological nutrient removal system. In this experiment, the effect of operating parameter including HRT of 7.0hr, BOD/TN ratios of 2.62~4.08, internal recycle of 50~300%, and return sludge of 50~100%, were studied during winter season. Efficiencies of organic matter and T-P removal and denitrification were not significantly affected by the change of temperature in winter season. However, the specific nitrification rate and nitrification efficiency decreased at low temperature. Besides, denitrification efficiencies increased with increasing BOD/TN ratios. It was also found that the internal recycle and return sludge ratio below 50% is required for the effective denitrification of low strength municipal wastewater. With operating mode 4 of the optimum, the effluent BOD, T-N and T-P concentration were obtained to average 5.8, 14.6, and 0.84 mg/L, respectively. The temperature-activity coefficient (${\theta}$) of specific nitrification rate, specific denitrification rate and specific phosphorus uptake rate were obtained 1.044, 1.017, 1.028, respectively.

Simultaneous Nitrification and Dennrincation of Recirculating Aquaculture Water by Biofilter Reactor (생물막 여과 반응기를 이용한 양어장 순환수의 동시 질산화 및 탈질산화 반응)

  • Lee, Min-Gyu;Suh, Kuen-Hack;Oh, Yung-Hee
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.409-415
    • /
    • 1997
  • In order to Investigate the possibility as a simple technique of wastewater treatment for recirculating aquaculture system, the experiment by a biofilter unfit was carried out. The high and stable removal efficiency of nitrogen could be obtained by selecting the optimum recycle ratio and DO concentration. It was found that the proper combination of nitrifacation and denitrfication step in the reactor would be required for increasing the removal efficiency. The extent of nitrogen removal gradually decreased UO the rise of re- cycle ratio since the depression of denitrificatlon by the lack of hydrogen donor. The depression of nitrogen removal was overcome by increasing the CIN ratio In the wastewater. The extent of phosphorus removal was increased slightly with the increase of DO concentration and recycle ratio, but high removal efficiency was not observed. However, the extent of COD removal was not affected by recycle ratio and DO concentration and showed the stable removal of above 90%.

  • PDF

The Evaluation on Solidification of Dredged Sediment for Recycle from Stagnant Water Area (정체성 수역 퇴적물 재활용을 위한 고형화 평가)

  • Kim, Sang Hyun;Ahn, Tae Woong;Choi, I Song;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.63-69
    • /
    • 2012
  • Sediment has been increasingly acknowledged as a carrier in water system and an available contamination. For this reason, dredging of sediment in reservoir to remediate water quality and secure storage capacity is conducted annually. However, disposal of numerous dredged sediment is necessary as a secondary problem. Currently, in Korea, dredged sediment is classified as waste to be reclamated or recycled into sandy soil, however, they are still in trouble because of spacial and environmental problem. Therefore, rather than simple disposal or reuse into sandy soil, it is necessary to research on method to manage main cause of pollution and increase the value as a resource. In this study, we intend to develop a recycle technology for numerous dredged sediment produced by dredging in deteriorated reservoirs using solidificator (stabilizer). To achieve this, we will consider utilization of dredged sediment and evaluation of use possibility as natural recycle by analysis the characteristics of soil-solidificator mixture in terms of physicochemical properties and the mixing ratio between sediment and solidificator.

A Development of Computerized Management System for Deconstruction (분별해체공사 통합관리 시스템의 개발)

  • Kim, Hyo-Jin;Kim, Chang-Hak
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.638-641
    • /
    • 2004
  • This study suggests the optimum deconstruction management system for minimizing construction waste and increasing reuse and recycle rate of material to be different from traditional demolition. The purpose of this system is to minimize environmental damages and reduce construction waste quantity of a country by planning and operating preliminarily estimation of demolition quantity, demolition methods of each structural elements and reuse or recycle methods of C&D waste. This system is consist of four modules such as planning of preliminary demolition survey, estimating of demolition quantity, planning of demolition schedule and planning of construction waste management, and these all modules can be used individually module according to user's utilization purpose.

  • PDF