• Title/Summary/Keyword: Recursive estimation

Search Result 330, Processing Time 0.026 seconds

Time-varying Estimation of Vocal Track Parameters During the Speech Transition Regions (음성천이구간에서의 성도 파라메타 시변추정에 관한 연구)

  • Choi, Hong-Sub
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.101-106
    • /
    • 1997
  • In this paper, sample selective RLS(SSRLS) method is proposed, which aims to eliminate the influence of pitch bias. Its basic concepts are as follows. First it extracts the open glottis interval by using the residual signals, then estimates the formant values from the selected speech samples excluding above open glottis interval. This method has some analogy with the SSLPS, the simulation is conducted upon the synthetic and real speech. From these results, we find more usefulness of the proposed method than the conventional ones.

  • PDF

State observer design for noise reduction and state estimation in the photovoltaic power generation system (태양광 발전 시스템의 노이즈 감소와 상태추정을 위한 상태관측기 설계)

  • Kim, Il-Song
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.369-371
    • /
    • 2007
  • Due to the measurement noise or system noise, the performance of photovoltaic power generation system can be degraded. If this noise is contained in the solar array voltage measurement signal, the correct operation of the maximum power point tracker can not be guaranteed. The application of the extended Kalman filter to the photovoltaic system can obtain enhanced states estimation result. The Kalman filter provides a recursive solution to optimally estimate from random noise signals. Additionally, as a consequence of Kalman filter, the unmeasurable state such as inductor current can be estimated without current sensor. The methods for system modeling and extended Kalman filter design are presented and the experimental results verify the validity of the proposed system.

  • PDF

A Modified Weighted Least Squares Approach to Range Estimation Problem (보완 가중 최소자승기법을 이용한 피동거리 추정필터 설계)

  • Whang, Ick-Ho;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2088-2090
    • /
    • 2003
  • A practical recursive weighted least square(WLS) solution is proposed to solve the passive ranging problem. Apart from the previous works based on the extended Kalman filter(EKF), to ensure the convergency at long-range, the proposed scheme makes use of line-of-sight(LOS) rate instead of bearing information. The influence of LOS rate measurement errors is investigated and it is asserted that the WLS estimates contain bias and scale factor errors. Together with simple compensation algorithm, the estimation errors of proposed filter can be reduced dramatically.

  • PDF

Enhanced Equivalent Circuit Modeling for Li-ion Battery Using Recursive Parameter Correction

  • Ko, Sung-Tae;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1147-1155
    • /
    • 2018
  • This paper presents an improved method to determine the internal parameters for improving accuracy of a lithium ion battery equivalent circuit model. Conventional methods for the parameter estimation directly using the curve fitting results generate the phenomenon to be incorrect due to the influence of the internal capacitive impedance. To solve this phenomenon, simple correction procedure with transient state analysis is proposed and added to the parameter estimation method. Furthermore, conventional dynamic equation for correction is enhanced with advanced RC impedance dynamic equation so that the proposed modeling results describe the battery dynamic characteristics more exactly. The improved accuracy of the battery model by the proposed modeling method is verified by single cell experiments compared to the other type of models.

Open Circuit Fault Diagnosis Using Stator Resistance Variation for Permanent Magnet Synchronous Motor Drives

  • Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.985-990
    • /
    • 2013
  • This paper proposes a novel fault diagnosis scheme using parameter estimation of the stator resistance, especially in the case of the open-phase faults of PMSM drives. The stator resistance of PMSMs can be estimated by the recursive least square (RLS) algorithm in real time. Fault diagnosis is achieved by analyzing the estimated stator resistance of each phase according to the fault condition. The proposed fault diagnosis scheme is implemented without any extra devices. Moreover, the estimated parameter information can be used to improve the control performance. The feasibility of the proposed fault diagnosis scheme is verified by simulation and experimental results.

Nonlinear structural system wind load input estimation using the extended inverse method

  • Lee, Ming-Hui
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.451-464
    • /
    • 2013
  • This study develops an extended inverse input estimation algorithm with intelligent adaptive fuzzy weighting to effectively estimate the unknown input wind load of nonlinear structural systems. This algorithm combines the extended Kalman filter and recursive least squares estimator with intelligent adaptive fuzzy weighting. This study investigated the unknown input wind load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying larger input wind load. Numerical simulation cases involving different input wind load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input wind loads.

Lossless Compression for Hyperspectral Images based on Adaptive Band Selection and Adaptive Predictor Selection

  • Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3295-3311
    • /
    • 2020
  • With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.

Experimental Study on Long-Term Prediction of Rebar Price Using Deep Learning Recursive Prediction Meothod (딥러닝의 반복적 예측방법을 활용한 철근 가격 장기예측에 관한 실험적 연구)

  • Lee, Yong-Seong;Kim, Kyung-Hwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.3
    • /
    • pp.21-30
    • /
    • 2021
  • This study proposes a 5-month rebar price prediction method using the recursive prediction method of deep learning. This approach predicts a long-term point in time by repeating the process of predicting all the characteristics of the input data and adding them to the original data and predicting the next point in time. The predicted average accuracy of the rebar prices for one to five months is approximately 97.24% in the manner presented in this study. Through the proposed method, it is expected that more accurate cost planning will be possible than the existing method by supplementing the systematicity of the price estimation method through human experience and judgment. In addition, it is expected that the method presented in this study can be utilized in studies that predict long-term prices using time series data including building materials other than rebar.

Adaptive CFAR Algorithm using Two-Dimensional Block Estimation (이차원 블록 추정을 이용한 적응 CFAR 알고리즘)

  • Choi Beyung Gwan;Lee Min Joon;Kim Whan Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • Adaptive constant false alarm rate(CFAR) algorithm is used for good detection probability as well as constant false alarm rate in clutter background. Especially, filtering technique adaptive to spatial variation is necessary for improving detection quality in non stationary clutter environment which has spatial correlation and large magnitude deviation. In this paper, we propose a two-dimensional block interpolation(TBI) adaptive CFAR algorithm that calculates the node estimate in the fred two dimensional region and subsequently determines the final estimate for each resolution cell by two-dimensional interpolation. The proposed method is efficient for filtering abnormal ejection by adopting distribution median in fixed region and also has advantage of reducing required memory space by using estimation method which gets final values after calculating the block node values. Through simulations, we show that the proposed method is superior to the traditional adaptive CFAR algorithms which are transversal or recursive in aspect of the detection performance and required memory space.

Radar Tracking Using Particle Filter for Track-Before-Detect(TBD) (TBD 처리를 위한 레이더용 파티클 필터 기법 연구)

  • Kwon, Ji-Hoon;Kang, Seung-Chul;Kwak, No-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.317-325
    • /
    • 2016
  • This paper describes the technique for Radar Particle filter for TBD(Track Before Detect) processing. TBD technique is applied when target is difficult to detect due to low signal-to-noise ratio caused by strong clutter environments, small RCS targets and stealth targets. Particle filter is suitable for a recursive TBD algorithm and has improved estimation accuracy than Kalman filter. In this paper, we will present a new method of calculating particle weight, when observation values(including strong clutter) are received at the same time. Estimation error performance of the particle filter algorithm is analyzed by using the virtual radar observation scenario.