• 제목/요약/키워드: Recursive dynamics formula

검색결과 4건 처리시간 0.025초

정전력 구동기의 동특성 해석 (A Study on Dynamic Analysis of the Electrostatic Actuator)

  • 이상규;김지남;문원규;최진환;박일한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.686-689
    • /
    • 2005
  • A numerical simulation method is developed to analyze the dynamic response of a cantilever switch, which is driven by electrostatic force and a basic component of electro-mechanical coupled system. First, point-charges model on conductor is proposed as a lumped parameter of electrical part. Then, this model is easily incorporated into a multi-body dynamics analysis algorithm, the generalized recursive dynamics formula previously developed by our research group. The resulting motion of a coupled overall system is formulated as a differential algebraic equation form including electrical and mechanical variables together. The equation is simultaneously solved in every time step. To implement this approach into the useful dynamics analysis tool, we used multibody dynamics software (RecurDyn) based on the generalized recursive formula using relative coordinate. The developed numerical simulation tool is evaluated by applying to many different driving condition and switch configuration. The final analysis model will be added to RecurDyn as a basic module for dynamics analysis of electro-mechanical coupled system.

  • PDF

DC 모터 구동시스템의 동역학 해석 모델 개발 (Development of a dynamics analysis model of mechanical system driven by DC motors)

  • 김무진;문원규;배대성;박일한;최진환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.497-500
    • /
    • 2002
  • When one is interested in the dynamics of a mechanical system with electric motors, the force generated by the motor is generally considered as only an applied torque or force independent of mechanical state variables such as velocity. For a system operated in non-steady dynamic conditions, however, the usual analysis approach may fail to predict some characteristics in the dynamic behaviors because of electromechanical coupling effects. In this paper, we propose dynamics analysis model in which dc motor dynamics with the electromechanical coupling effects are embedded to mechanical dynamics models. The do motor is modeled based on its equivalent circuit model and included in the dynamics solving algorithm which we developed before, called generalized recursive dynamics formula. The developed dynamic analysis model is effective and realistic for analysis of electromechanical dynamics of a system with do motors. The developed model is evaluated by constructing and simulating the flexible antennas of an artificial satellite driven by do motors.

  • PDF

순환적으로 결합되는 정온기들을 갖는 $N{\sigma}T$ 분자동역학 전산모사에 적용한 외연적 적분기법 (Explicit integration algorithm for fully flexible unit cell simulation with recursive thermostat chains)

  • 정광섭;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.512-517
    • /
    • 2007
  • In the previous development of the recursive thermostat chained fully flexible cell molecular dynamics simulation, implicit time integration method such as generalized leapfrog integration is used. The implicit algorithm is very much complicated and not easy to show time reversibility because it is solved by the nonlinear iterative procedure. Thus we develop simple, explicit symplectic time integration formula for the recursive thermostat chained fully flexible unit cell simulation. Uniaxial tension test is performed to verify the present explicit algorithm. We check that the present simulation satisfies the ergodic hypothesis for various values of fictitious mass and coefficient of multiple thermostat system. The proposed method should be helpful to predict mechanical and thermal behavior of nano-scale structure.

  • PDF

Dynamics of thick hygrothermal viscoelastic composite laminates through finite element method

  • Assie, Amr E.;Mahmoud, Fatin F.
    • Structural Engineering and Mechanics
    • /
    • 제17권5호
    • /
    • pp.727-734
    • /
    • 2004
  • An uncoupled computational model for analyzing the hygrothermal dynamic response of composite laminates has been developed. The constitutive equations, expressed in an integral form, and involving relaxation moduli are adopted, to describe the non-aging hygrothermorheologically simple materials. A Prony series represents the relaxation moduli is exploited in order to derive a recursive relationship, and thereby eliminate the storage problem that arises when dealing with material possessing memory. The problem is formulated in a descritized variational form. Mindlin and higher order finite elements are employed for spatial descretization, while the Newmark average acceleration scheme is exploited for temporal descritization. The adopted recursive formula uses only the details of the previous event to compute the details of the current one. Numerical results of the displacement fields of both thin and thick viscoelastic laminates problems are discussed to show up the effectiveness of Mindlin and higher-order shear theories.