• 제목/요약/키워드: Recursive Least Squares

검색결과 174건 처리시간 0.022초

Robust adaptive control of linear time-varying systems which are not necessarily slowly varying

  • Song, Chan-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1424-1429
    • /
    • 1990
  • This paper presents an indirect adaptive control scheme for discrete linear systems whose parameters are not necessrily slowly varying. It is assumed that system parameters are modelled as linear combinations of known bounded functions with unknown constant coefficients. Unknown coefficients are estimated using a recursive least squares algorithm with a dead zone and a forgetting factor. A control law which makes the estimated model exponentially stable is constructed. With this control law and a state observer, all based on the parameter estimates, it is shown that the resulting closed-loop system is globally stable and robust to bounded external disturbances and small unmodelled plant uncertainties.

  • PDF

재귀적 최소 자승 추정법을 사용한 원격 센서 시스템 (Passive Telemetry Sensor System using Recursive Least Squares Estimation)

  • 김경엽;이준탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.333-337
    • /
    • 2003
  • 열악한 환경에서 동작해야 하거나 물리적 접근이 어려운 곳에 장착되는 센서 시스템의 경우, 유선에 의한 정보전달이 어려울 뿐만 아니라 센서 내 전원설비가 제한적일 수도 있다. 따라서, 본 논문에서는 이러한 문제점에 대한 해결책으로서 밧데리 없이 유도결합에 의하여 원격 센서로부터 정보 취득이 가능한 한 방법을 제안하였다. 이 방법은 전원공급에 의한 유도 결합식의 원격센서 시스템과는 달리, 원격 센서의 정전용량을 변ㆍ복조 과정 없이 재귀적 최소 자승 추정법에 의해 센서의 정전용량을 고정도로 추정하는 것이다. 이를 위하여 시스템의 유도결합 모델을 사용하여 정확도가 높은 원격 센서 시스템을 구현할 수 있었다.

  • PDF

신경회로망 기법을 이용한 극-영점 배치 자기 동조 제어기 (Pole-Zero Assignment Self-Tuning Controller Using Neural Network)

  • 구영모;이윤섭;장석호;우광방
    • 대한전기학회논문지
    • /
    • 제40권2호
    • /
    • pp.183-191
    • /
    • 1991
  • This paper develops a pole-zero assignment self-tuning regulator utilizing the method of a neural network in the plant parameter estimation. An approach to parameter estimation of the plant with a Hopfield neural network model is proposed, and the control characteristics of the plant are evaluated by means of a simulation for a second-order linear time invariant plant. The results obtained with those of Exponentially Weighted Recursive Least Squares(EWRLS) method are also shown.

Online Estimation of SOC and Parameters of Battery Using Augmented Sigma-Point Kalman Filter and RLS

  • Hoang, Thi Quynh Chi;Nguyen, Hoang Vu;Lee, Dong-Choon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.542-543
    • /
    • 2014
  • In this paper, an estimation scheme based on an augmented sigma-point Kalman filter to estimate the state of charge (SOC) of the battery is presented, where the battery parameters of the series resistance ($R_o$), diffusion capacitance ($C_1$) and resistance ($R_1$) are also estimated through the recursive least squares (RLS) for better accuracy of the SOC. The effectiveness of the proposed method is verified by simulation results.

  • PDF

Comparison of Structural Change Tests in Linear Regression Models

  • Kim, Jae-Hee
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1197-1211
    • /
    • 2011
  • The actual power performance of historical structural change tests are compared under various alternatives. The tests of interest are F, CUSUM, MOSUM, Moving Estimates and empirical distribution function tests with both recursive and ordinary least-squares residuals. Our comparison of the structural tests involves limiting distributions under the hypothesis, the ability to detect the alternative hypotheses under one or double structural change, and smooth change in parameters. Even though no version is uniformly superior to the other, the knowledge about the properties of those tests and connections between these tests can be used in practical structural change tests and in further research on other change tests.

적분기를 갖는 직접 적응 극 배치 제어기의 새로운 설계 기법 (A Novel Approach to the Design of Discrete Adative Pole Assignment Controller with Integral Action)

  • 김종환;이주장;김태현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.60-63
    • /
    • 1990
  • This note presents a direct adaptive pole assignment control for general discrete, linear, time-invariant, nonmimum phase system.Controller parameters are estimated from the recursive least-squares algorithm, and some additional auxiliary parameters are obtained from aset of recursive equations based on a certain polynomial identity which is derived from the pole assignment equation and the Bezout identity. This scheme increase the numerical stability of the auxiliary parameters, and guarantees local convergence without any extra conditions for the external input. The effectiveness of the proposed scheme is demonstrated by the computer simulation.

  • PDF

RLS 기반의 Natural Actor-Critic 알고리즘을 이용한 터널 환기제어기 설계 (Tunnel Ventilation Controller Design Employing RLS-Based Natural Actor-Critic Algorithm)

  • 주백석;김동남;홍대희;박주영;정진택;권태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.53-54
    • /
    • 2006
  • The main purpose of tunnel ventilation system is to maintain CO pollutant and VI (visibility index) under an adequate level to provide drivers with safe driving condition. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement teaming (RL) method. RL is a goal-directed teaming of a mapping from situations to actions. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. Constructing the reward of the tunnel ventilation system, two objectives listed above are included. RL algorithm based on actor-critic architecture and natural gradient method is adopted to the system. Also, the recursive least-squares (RLS) is employed to the learning process to improve the efficiency of the use of data. The simulation results performed with real data collected from existing tunnel are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  • PDF

적응형 되먹임 기반 종방향 자율주행 구동기 고장 탐지 및 허용 제어 알고리즘 개발 (Development of an Adaptive Feedback based Actuator Fault Detection and Tolerant Control Algorithms for Longitudinal Autonomous Driving)

  • 오광석;이종민;송태준;오세찬;이경수
    • 자동차안전학회지
    • /
    • 제12권4호
    • /
    • pp.13-22
    • /
    • 2020
  • This paper presents an adaptive feedback based actuator fault detection and tolerant control algorithms for longitudinal functional safety of autonomous driving. In order to ensure the functional safety of autonomous vehicles, fault detection and tolerant control algorithms are needed for sensors and actuators used for autonomous driving. In this study, adaptive feedback control algorithm to compute the longitudinal acceleration for autonomous driving has been developed based on relationship function using states. The relationship function has been designed using feedback gains and error states for adaptation rule design. The coefficients in the relationship function have been estimated using recursive least square with multiple forgetting factors. The MIT rule has been adopted to design the adaptation rule for feedback gains online. The stability analysis has been conducted based on Lyapunov direct method. The longitudinal acceleration computed by adaptive control algorithm has been compared to the actual acceleration for fault detection of actuators used for longitudinal autonomous driving.

통계적 오차보상 기법을 이용한 센서 네트워크에서의 RDOA 측정치 기반의 표적측위 (Stochastic Error Compensation Method for RDOA Based Target Localization in Sensor Network)

  • 최가형;나원상;박진배;윤태성
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1874-1881
    • /
    • 2010
  • A recursive linear stochastic error compensation algorithm is newly proposed for target localization in sensor network which provides range difference of arrival(RDOA) measurements. Target localization with RDOA is a well-known nonlinear estimation problem. Since it can not solve with a closed-form solution, the numerical methods sensitive to initial guess are often used before. As an alternative solution, a pseudo-linear estimation scheme has been used but the auto-correlation of measurement noise still causes unacceptable estimation errors under low SNR conditions. To overcome these problems, a stochastic error compensation method is applied for the target localization problem under the assumption that a priori stochastic information of RDOA measurement noise is available. Apart from the existing methods, the proposed linear target localization scheme can recursively compute the target position estimate which converges to true position in probability. In addition, it is remarked that the suggested algorithm has a structural reconciliation with the existing one such as linear correction least squares(LCLS) estimator. Through the computer simulations, it is demonstrated that the proposed method shows better performance than the LCLS method and guarantees fast and reliable convergence characteristic compared to the nonlinear method.

Spatio-temporal protocol for power-efficient acquisition wireless sensors based SHM

  • Bogdanovic, Nikola;Ampeliotis, Dimitris;Berberidis, Kostas;Casciat, Fabio;Plata-Chaves, Jorge
    • Smart Structures and Systems
    • /
    • 제14권1호
    • /
    • pp.1-16
    • /
    • 2014
  • In this work, we address the so-called sensor reachback problem for Wireless Sensor Networks, which consists in collecting the measurements acquired by a large number of sensor nodes into a sink node which has major computational and power capabilities. Focused on applications such as Structural Health Monitoring, we propose a cooperative communication protocol that exploits the spatio-temporal correlations of the sensor measurements in order to save energy when transmitting the information to the sink node in a non-stationary environment. In addition to cooperative communications, the protocol is based on two well-studied adaptive filtering techniques, Least Mean Squares and Recursive Least Squares, which trade off computational complexity and reduction in the number of transmissions to the sink node. Finally, experiments with real acceleration measurements, obtained from the Canton Tower in China, are included to show the effectiveness of the proposed method.