• Title/Summary/Keyword: Recurrent Hermite polynomial neural network

Search Result 2, Processing Time 0.015 seconds

Nonlinear Backstepping Control of SynRM Drive Systems Using Reformed Recurrent Hermite Polynomial Neural Networks with Adaptive Law and Error Estimated Law

  • Ting, Jung-Chu;Chen, Der-Fa
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1380-1397
    • /
    • 2018
  • The synchronous reluctance motor (SynRM) servo-drive system has highly nonlinear uncertainties owing to a convex construction effect. It is difficult for the linear control method to achieve good performance for the SynRM drive system. The nonlinear backstepping control system using upper bound with switching function is proposed to inhibit uncertainty action for controlling the SynRM drive system. However, this method uses a large upper bound with a switching function, which results in a large chattering. In order to reduce this chattering, a nonlinear backstepping control system using an adaptive law is proposed to estimate the lumped uncertainty. Since this method uses an adaptive law, it cannot achiever satisfactory performance. Therefore, a nonlinear backstepping control system using a reformed recurrent Hermite polynomial neural network with an adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in order to enhance the robustness of the SynRM drive system. Further, the reformed recurrent Hermite polynomial neural network with two learning rates is derived according to an increment type Lyapunov function to speed-up the parameter convergence. Finally, some experimental results and a comparative analysis are presented to verify that the proposed control system has better control performance for controlling SynRM drive systems.

SynRM Servo-Drive CVT Systems Using MRRHPNN Control with Mend ACO

  • Ting, Jung-Chu;Chen, Der-Fa
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1409-1423
    • /
    • 2018
  • Compared with classical linear controllers, a nonlinear controller can result in better control performance for the nonlinear uncertainties of continuously variable transmission (CVT) systems that are driven by a synchronous reluctance motor (SynRM). Improved control performance can be seen in the nonlinear uncertainties behavior of CVT systems by using the proposed mingled revised recurrent Hermite polynomial neural network (MRRHPNN) control with mend ant colony optimization (ACO). The MRRHPNN control with mend ACO can carry out the overlooker control system, reformed recurrent Hermite polynomial neural network (RRHPNN) control with an adaptive law, and reimbursed control with an appraised law. Additionally, in accordance with the Lyapunov stability theorem, the adaptive law in the RRHPNN and the appraised law of the reimbursed control are established. Furthermore, to help improve convergence and to obtain better learning performance, the mend ACO is utilized for adjusting the two varied learning rates of the two parameters in the RRHPNN. Finally, comparative examples are illustrated by experimental results to confirm that the proposed control system can achieve better control performance.