• Title/Summary/Keyword: Rectus femoris tightness

Search Result 2, Processing Time 0.016 seconds

The Effect of Patellar Inferior Gliding on Knee Flexion Range of Motion in Individuals With Rectus Femoris Tightness

  • Kim, Jun-hee;Kim, Moon-hwan;Jeon, In-cheol;Hwang, Ui-jae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.23 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • Background: Various methods are used for recovery of knee flexion range of motion (ROM) due to a tightened rectus femoris muscle (RFM) or limited inferior glide of the patella. Stretching methods are common interventions for restoring the tightened RFM length. Also patellar inferior gliding (PIG) technique can recover tightened RFM length too. However, effect of applying the PIG to passive knee flexion (PKF) has not been studied. Objects: The purpose of this study was to investigate the effect of combining PIG with RFM stretching for improving knee flexion ROM in subjects with RFM tightness. Methods: Twenty-six subjects with RFM tightness were recruited. Two different methods of knee stretching were tested: 1) PKF during modified Thomas test (MTT) and 2) PKF with PIG during MTT. The passive stretching forces was controlled by hand-held dynamometer. The knee flexion ROM angle was measured by a MTT with ImageJ software. Differences between the conditions with and without PIG were identified with a paired t-test. Results: The knee flexion ROM was significantly greater for PKF with PIG ($114.44{\pm}9.33$) than for PKF alone ($108.97{\pm}9.42$) (p<.001). Conclusion: A combination of passive knee flexion exercise and PIG can be more effective than PKF in increasing knee flexion ROM in individuals with RFM tightness.

The Effect on Muscle Activation in the Trunk and Lower Limbs While Squatting with Slope-whole-body Vibration (스쿼트 동작 시 경사기능전신진동기의 적용이 몸통 및 하지 근 활성도에 미치는 영향)

  • Oh, Ju-Hwan;Kang, Seung-Rok;Kwon, Tae-Kyu;Min, Jin-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.383-391
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of dynamic squats with slope-whole body vibration (WBV) on the trunk and lower limb in muscle activities. Method : 9 healthy women (age: $21.1{\pm}0.6years$, height: $160.5{\pm}1.4cm$, body weight: $50.5{\pm}2.4kg$) were recruited for this study. Muscle activities in the trunk and lower limb muscles, including biceps femoris (BF), rectus femoris (RF), rectus abdominum (RA), gastrocnemius (GCM), iliocostalis lumborum (IL) and tibialis anterior (TA), were recorded using an EMG measurement system. The test was performed by conducting dynamic squats with slope-WBV using frequency (10Hz, 50Hz), amplitude (0.5mm), and degree ($0^{\circ}$, $5^{\circ}$). Experimental method consisted of 2-pre-sessions and 1-test-session for 20 seconds. Results : The results showed that the muscle activities of the trunk and low limb muscles increased significantly with the $5^{\circ}$ slope and lower frequency (10Hz) except for in the TA. From this result, we confirmed that the slope and WBV could efficiently affect stimulation, enhancing muscle activities by facilitating neural control trail and muscle chain tightness. Conclusion : Utilizing the slope-WBV device while squatting could give positive effects on muscle activation in the trunk and lower limb muscles and provide neural stimulation, enhancing muscle chain of control subsystem through TVR (tonic vibration reflex).