• Title/Summary/Keyword: Rectangular steel tubular

Search Result 41, Processing Time 0.024 seconds

Behavior of PHC Pile Connected by Bolted Rectangular Steel Tubular (볼트식 각관형식으로 이음된 PHC 말뚝의 거동)

  • Yoon, Won-Sub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • In this study, the applicability of PHC pile jointing method using rectangular steel tubular was studied. PHC pile joints are welded and bolt assembly. The bolt assembly method is a method that improves the various problems of welded joints. Numerical analysis and tests were conducted to analyze the applicability of the PHC pile jointing method using a rectangular steel tubular. The tests were carried out to test the material properties of the rectangular steel tubular material and the bending test of the pile joints. The numerical analysis was interpreted in the same conditons as the tests conditions. As a result, the material strength of each rectangular steel tubular could be used as a joint material. In the bending test, it was evaluated as a sTable material above the allowable stress of piles. In the numerical analysis results under the same conditions as the tests, it was possible to apply the pile joint material without exceeding the allowable stress of the material.

Axial behaviour of rectangular concrete-filled cold-formed steel tubular columns with different loading methods

  • Qu, Xiushu;Chen, Zhihua;Sun, Guojun
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.71-90
    • /
    • 2015
  • Axial compression tests have been carried out on 18 rectangular concrete-filled cold-formed steel tubular (CFST) columns with the aim of investigating the axial behaviour of rectangular CFST columns under different loading methods (steel loaded-first and full-section loaded methods). The influence of different loading methods on the ultimate strength of the specimens was compared and the development of Poisson's Ratio as it responds to an increasing load was reported and analysed. Then, the relationship between the constraining factor and the strength index, and the relationship between the constraining factor and ductility index of the specimens, were both discussed. Furthermore, the test results of the full-section loaded specimens were compared with five international code predicted values, and an equation was derived to predict the axial carrying capacity for rectangular CFST columns with a steel loaded-first loading method.

Experimental Study on Bond Stress of Concrete Filled Rectangular Steel Tubular Composite Column Subjected to Axial Load (중심 축 하중을 받는 충전각형강관 합성기둥의 부착응력에 관한연구)

  • Lee, Hyung-Seok;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.105-110
    • /
    • 2003
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled Rectangular steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

Study on rectangular concrete-filled steel tubes with unequal wall thickness

  • Zhang, Yang;Yu, Chen-Jiang;Fu, Guang-Yuan;Chen, Bing;Zhao, She-Xu;Li, Si-Ping
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1073-1084
    • /
    • 2016
  • Rectangular concrete-filled steel tubular columns with unequal wall thickness were investigated in the paper. The physical centroid, the centroidal principal axes of inertia, and the section core were given. The generalized bending formula and the generalized eccentric compression formula were deduced, and the equation of the neutral axis was also provided. The two rectangular concrete-filled steel tubular stub specimens subjected to the compression load on the physical centroid and the geometric centroid respectively were tested to verify the theoretical formulas.

Experimental study on partially concrete-filled steel tubular columns

  • Ishizawa, T.;Nakano, T.;Iura, M.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.55-69
    • /
    • 2006
  • The results of tests conducted on 11 concrete-filled steel tubular columns were reported. Concrete was partially filled in circular steel tubular columns. The primary test parameters were radius and thickness of steel tubes, concrete height, loading patterns and attachment of diaphragm and studs. Concrete strain was measured directly by embedding strain gauges so that the effect of diaphragm on concrete confinement could be investigated. The effects of concrete height and diaphragm on ultimate strength and ductility of steel tubes were investigated. The comparisons of the test results with the existing results for rectangular cross-sections were made on the basis of ultimate strength and ductility of concrete-filled steel tubular columns.

Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression

  • Huang, Yan-Sheng;Long, Yue-Ling;Cai, Jian
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.115-128
    • /
    • 2008
  • A method is proposed to estimate the ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression. The ultimate strength of concrete core is determined by using the conception of the effective lateral confining pressure and a failure criterion of concrete under true triaxial compression, which takes into account the difference between the lateral confining pressure provided by the broad faces of the steel tube and that provided by the narrow faces of the steel tube. The longitudinal steel strength of broad faces and that of the narrow faces of the steel tube are calculated respectively due to that buckling tends to occur earlier and more extensively on the broader faces. Finally, the proposed method is verified with experimental results. Corresponding values of ultimate strength calculated by ACI (2005), AISC (1999) and GJB4142-2000 are given respectively for comparison. It is found from comparison that the proposed method shows a good agreement with the experimental results.

Strength of Concrete-Filled Rectangular Steel Tubular Columns (콘크리트 충전 각형강관 기둥의 내력 평가)

  • Yoo, Yeong Chan;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.89-98
    • /
    • 1999
  • The objective of this paper is to investigate the structural behavior of concrete filled steel tubular columns subjected to eccentric load. With experiment and analytical study, the buckling behavior of columns is investigated and compared with each other to the view of main parameters. Appling foreign standards in the experimental results, we suggested new strength formula of concrete-filled steel tubular columns. The parameters are slenderness, eccentric ratio, and concrete filled or not. The experiment are carried out by simple loading.

  • PDF

A Study on the Stress Concentration Factor and Fatigue Strength for T-Tubular Joints by FEM (유한요소법에 의한 튜블라 이음부의 응력집중계수 및 피로강도 해석)

  • 엄동석;강성원;하우일
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.141-150
    • /
    • 1994
  • In designing, the strength of tubular joint has been an important problem for integrity of steel structures in which many tubular members are used. This paper presents the results of FEM analysis on stress concentration and fatigue crack initiation life for two types of tubular joints. One is circular and rectangular T type joints which consist of circular brace and rectangular chord. Another is circular and circular T type joints which consist of circular brace and circular chord. FEM analyses were performed under the axial load and in-plane bending moment. The fatigue crack initiation life can be estimated by using $\varepsilon$-N curve and by applying the Palmgren-Miner linear damage rule. According to the results, the stress concentration factor(SCF) of circular and rectangular joints is higher than that of circular and circular joints. The fatigue crack initiation lives of circular-circular joints and circular-rectangular joints were calculated.

  • PDF

Ultimate moment capacity of foamed and lightweight aggregate concrete-filled steel tubes

  • Assi, Issam M.;Qudeimat, Eyad M.;Hunaiti, Yasser M.
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2003
  • An experimental investigation of lightweight aggregate and foamed concrete contribution to the ultimate strength capacity of square and rectangular steel tube sections is presented in this study. Thirty-four simply supported beam specimens, 1000-mm long, filled with lightweight aggregate and foamed concretes were tested in pure flexural bending to calculate the ultimate moment capacity. Normal concrete-filled steel tubular and bare steel sections of identical dimensions were also tested and compared to the filled steel sections. Theoretical values of ultimate moment capacity of the beam specimens were also calculated in this study for comparison purposes. The test results showed that lightweight aggregate and foamed concrete significantly enhance the load carrying capacity of steel tubular sections. Furthermore, it can be concluded from this study that lightweight aggregate and foamed concretes can be used in composite construction to increase the flexural capacity of the steel tubular sections.

Bearing Pressure and Design of Rectangular Steel Tubular Column Baseplate under Concentric Loadings (중심 압축력을 받는 각형강관기둥 베이스플레이트의 지압응력과 설계에 대한 연구)

  • Lee, Seung Joon;Kim, Jeong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.463-470
    • /
    • 2004
  • In this study, the bearing pressure distribution and design method of rectangular steel tubular column base plates under concentric loading were investigated. In general, the size and thickness of the baseplate are determined with the assumption that the bearing pressure of the column baseplate is uniformly distributed. When the column is loaded lightly, however, the size of the baseplate becomes smaller, the thickness becomes thinner and the bearing pressure of the baseplate is not distributed evenly. In this study, the distribution of the bearing pressure was investigated using the experimental and analytical methods. Four test specimens of the rectangular steel column baseplate were fabricated and tested. The analysis of the specimens was done using the finite element analysis program ANSYS. The result was that it was appropriate to use the effective width method to design the lightly loaded column baseplate, because the bearing pressure was not distributed evenly and was only concentrated under the column section.