• Title/Summary/Keyword: Rectangular distribution

Search Result 484, Processing Time 0.025 seconds

Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio (세장비가 큰 사각컵 디프 드로잉의 유한요소 해석)

  • Ku T.W.;Ha B.K.;Song W.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

Shear stresses below the rectangular foundations subjected to biaxial bending

  • Dagdeviren, Ugur
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.189-205
    • /
    • 2016
  • Soils are subjected to additional stresses due to the loads transferred by the foundations of the buildings. The distribution of stress in soil has great importance in geotechnical engineering projects such as stress, settlement and liquefaction analyses. The purpose of this study is to examine the shear stresses on horizontal plane below the rectangular foundations subjected to biaxial bending on an elastic soil. In this study, closed-form analytical solutions for shear stresses in x and y directions were obtained from Boussinesq's stress equations. The expressions of analytical solutions were simplified by defining the shear stress influence values ($I_1$, $I_2$, $I_3$), and solution charts were presented for obtaining these values. For some special loading conditions, the expressions for shear stresses in the soil below the corners of a rectangular foundation were also given. In addition, a computer program was developed to calculate the shear stress increment at any point below the rectangular foundations. A numerical example for illustrating the use of the presented solution charts was given and, finally, shear stress isobars were obtained for the same example by a developed computer program. The shear stress expressions obtained in this work can be used to determine monotonic and cyclic behavior of soils below rectangular foundations subjected to biaxial bending.

Temperature Distribution and Thermal Stresses of Infinite Plate due to Tandem Arc Welding (Tandem熔接으로 因한 溫度分布 및 熱應力)

  • Kim, Hyo-Chul;Lee, Jun-Yeol
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.3
    • /
    • pp.5-12
    • /
    • 1977
  • In shipyard production processes, lots of steel plates are assembled by welding. Some rectangular steel plates are buttwelded to build a large block in panel production lines. There are some advantages to take the tandem arc welding in butt joints of rectangular plates with respect to welding speed. Hence, the thermal stresses and the temperature distribution of the tandem arc welding are studied in this paper. The solutions in the case of the infinite plate with two instantaneous point heat sources have been obtained. And then the solutions have been extended to the case of two moving heat sources corresponding to the tandem arc welding with the aid of Duhamel's superposition integral. It was found that the temperature distribution was good agreement with the results of the experiments by Rosenthal and Park and the thermal stresses calculated were acceptable with respect to a physical phenomenon. These solutions are able to be applied to the problem such as a line heating.

  • PDF

Base Station Antenna with Rectangular Radiation Pattern using Strip Feeding Planar Monopole Array (스트립 급전 평면 모노폴 배열을 이용한 직사각형 방사패턴 기지국용 안테나)

  • 신헌철;문상만;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.1018-1024
    • /
    • 2001
  • In this paper, an array antenna is designed far base station of a street micro-cell in urban areas. It has a rectangular radiation pattern. The current distribution of the array is decided by using a modified Woodward-Lawson sampling pattern synthesis method. To confirm the realization of the array antenna with rectangular pattern, 12 array antenna with a planar type monopole fed by stripline is fabricated and measured. In the results of the measured values, H-plane pattern of the antenna nearly yields a rectangular radiation pattern.

  • PDF

Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions

  • Ghasemabadian, M.A.;Kadkhodayan, M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.271-299
    • /
    • 2016
  • In this article, based on the higher-order shear deformation plate theory, buckling analysis of a rectangular plate made of functionally graded piezoelectric materials and its effective parameters are investigated. Assuming the transverse distribution of electric potential to be a combination of a parabolic and a linear function of thickness coordinate, the equilibrium equations for the buckling analysis of an FGP rectangular plate are established. In addition to the Maxwell equation, all boundary conditions including the conditions on the top and bottom surfaces of the plate for closed and open circuited are satisfied. Considering double sine solution (Navier solution) for displacement field and electric potential, an analytical solution is obtained for full simply supported boundary conditions. The accurate buckling load of FGP plate is presented for both open and closed circuit conditions. It is found that the critical buckling load for open circuit is more than that of closed circuit in all loading conditions. Furthermore, it is observed that the influence of dielectric constants on the critical buckling load is more than those of others.

A Study on the Determination of Contact Area of a Plate on Elastic Half-Space (탄성지반 위에 놓인 평판의 접촉영역 결정에 관한 연구)

  • 정진환;이외득;김동석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.405-412
    • /
    • 1998
  • According to the relative stiffness between the half-space and plate or loading condition, some parts of the plate can be separated from the half-space. The finite element procedure to determine the contact area by considering the distribution of contact pressure between plate and the elastic half-space is developed. The vertical surface displacements of the elastic half-space can be obtained through the integrations of the Boussinesq's solution for a point load. The rectangular plate on the elastic half-space is modeled by the 8-node rectangular and 6-node triangular elements and the Mindlin plate theory is used in oder to consider the transverse shear effect. In this study, the contact area may be determined approximately by the analysis with rectangular elements. From this results, the mesh pattern is modified by using triangular and rectangular elements. The contact area can be determined by the new mesh pattern with a relatively sufficient accuracy.

  • PDF

Analytical studies on stress concentration due to a rectangular small hole in thin plate under bending loads

  • Yang, Y.;Liu, J.K.;Cai, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.669-678
    • /
    • 2010
  • In general means, the stress concentration problem of elastic plate with a rectangular hole can be investigated by numerical methods, and only approximative results are derived. This paper deduces an analytical study of the stress concentration due to a rectangular hole in an elastic plate under bending loads. Base on classical elasticity theory and FEM applying the U-transformation technique, the uncoupled governing equations with 3-DOF are established, and the analytical displacement solutions of the finite element equations are derived in series form or double integral form. Therefore, the stress concentration factor can then be discussed easily and conveniently. For the plate subjected to unidirectional bending loads, the non-conforming plate bending element with four nodes and 12-DOF is taken as examples to demonstrate the application of the proposed method. The inner force distribution is obtained. The solutions are adequate for the condition when the hole is far away from the edges and the thin plate subjected to any transverse loadings.

Study on the numerical modeling of turbulent natural convection in rectangular enclosure (사각형 공간 내의 난류 자연대류 수치해석 모델에 관한 연구)

  • 정효민;이철재;정한식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 2000
  • There are many under going researchs for the natural convection and fluid flow in rectangular enclosure. In this paper, the optimal model that is the most frequently used for the analysis of a turbulent natural convection in rectangular enclosure is suggested by comparing with the result of Cheesewright's experiment. As We can see the distribution of the velocity, temperature, and turbulent kinitic energy, ST model tends to exaggerate the result of the experiment. The LS model generates better experimental result than the ST and DA's. Therefore, it is resonable to adopt the LS model that contains explicit physical meanings of each term in eouation of turbulent kinitic energy.

  • PDF

Theoretical analysis of stress-strain behavior of multi-layer RC beams under flexure

  • Ertekin Oztekin
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.505-515
    • /
    • 2024
  • In this study, obtaining theoretical stress-strain curves and determining the parameters defining the equivalent rectangular stress block were aimed for 3 and 4-layered rectangular Reinforced Concrete (RC) cross-sections subjected to flexure. For these aims, the analytical stress-strain model proposed by Hognestad was chosen for the concrete grades (20 MPa≤fck≤60 MPa) used in this study. The tensile strength of the concrete was neglected and the thickness of the concrete layers in the compression zone of the concrete cross-section was taken as equal. In addition, while concrete strength was kept constant within each layer, concrete strengths belonging to separate layers were increased from the neutral axis towards the outer face of the compression zone of the concrete cross-section. After the equivalent rectangular stress block parameters were determined by numerical iterations, variations of these parameters depending on concrete strength in layers and layer numbers were obtained. Finally, some analytical equations have been proposed to predict the equivalent stress block parameters for the 3 and 4-layered RC cross-sections and validities of these proposed equations were shown by different metrics in this study.

Formability of Sheet Metal in Noncircular Cup Drawing(I) (for Rectangular Cross Section) (비원형 단면에 대한 판재 성형성(I) (직사각형 단면에 대하여))

  • Shin, J.H.;Kim, M.S.;Seo, D.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.84-95
    • /
    • 1994
  • The effects of punch and blank shapes in the rectangular cup drawing process are examined experimentally to improve the formabilities. For this purpose, three blank shapes which are h-bl., G-bl., and T-bl., and five punch shape factors which are the ratios of two adjacent side lengths in rectangular cross section are adopted. The constructing methods of the three blank shapes are as follows. The h-bl. is designed by slip-line theory, and the G-bl. is selected for the similar shape to the punch. The T-bl. is obtained by the drawing method which is introduced in the technical references. The five punch shape factors are selected for length/width=1, 1.25, 1.5, 1.75 and 2. The experimental procedures are performed for all the above forming conditions to investigate and compare the formabilities. As a result, it is verified experimentally that the rectangular cups drawn by the h-bl. are more ideal than those drawn by G-bl. and T-bl.. They have not only higher limiting drawing ratio, more uniformity in drawn cup heights and more ideal thickness distributions, but also need relatively less maximum drawing forces.

  • PDF