• Title/Summary/Keyword: Rectangular dies

Search Result 22, Processing Time 0.017 seconds

An Algorithm for Splitting a Box by a Loop and Its Applications in Manufacturing

  • Kheerwal, Anoop;Shanmuganathan, Vivekananda;Shringi, Rohitashwa;Karunakaran, Karuna P.
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.85-95
    • /
    • 2003
  • During the design of dies and molds, the cavity of the object is obtained by subtracting it from a surrounding rectangular block. This box is subsequently split into two halves by the parting surface. Similar problems also occur in some RP processes such as LOM, SGC, SLS and 3DP where the machine produces a block inside which the prototype is buried. Determining the orientation of the object inside the box and the corresponding parting surface taking appropriate constraints into account have been addressed by several researchers. However, given the parting surface, the problem of splitting the box development of a software package called OptiLOM (now a module of an RP software Magics 8.0), the authors realized non-triviality of this problem since the loop can spread over as many as 5 faces of the box. In this paper, the authors have tried to bring out the importance of this problem and have presented their algorithm to solve it.

Punching of Micro-Hole Array (미세 홀 어레이 펀칭 가공)

  • Son Y. K.;Oh S. I.;Rhim S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.193-197
    • /
    • 2005
  • This paper presents a method by which multiple holes of ultra small size can be punched simultaneously. Silicon wafers were used to fabricate punching die. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of $1.5{\mu}m$ in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The diameter of holes ranges from $2-10{\mu}m$. The process set-up is similar to that of the flexible rubber pad forming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions, surface qualities, and potential defect. The effects of the die hole dimension on ultra small size hole formation of the thin foil were discussed. The optimum process condition such as proper die shape and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole array in a one step operation.

  • PDF