• 제목/요약/키워드: Rectangular Tank

검색결과 160건 처리시간 0.023초

배플의 높이 변화에 따른 3 차원 사각 탱크 내부의 슬로싱 현상에 관한 수치적 연구 (Numerical Study on Liquid Sloshing in the Three-dimensional Rectangular Tank with Various Baffle Heights)

  • 이창열;윤현식;정재환
    • 대한조선학회논문집
    • /
    • 제47권1호
    • /
    • pp.38-46
    • /
    • 2010
  • This study aims at investigating the effect of the baffle height on the liquid sloshing in the three-dimensional (3D) rectangular tank. In order to simulate the 3D incompressible viscous two-phase flow in the 3D tank with partially filled liquid, the present study has adopted the volume of fluid (VOF) method based on the finite-volume method which has been well verified by comparing with the results of the relevant previous researches. The ratio of the baffle height ($h_B$) to filling level (h) has been changed in the range of $0{\leq}h_B/h{\leq}1.2$ to observe the effect on the impact loads on the side wall and free surface behavior. Generally, as baffle height increases, the impact pressure on the wall decreases and the deformation of free surface becomes weaker. However it seemed that a critical ratio of the baffle height existed to reveal the lowest impact pressure on the wall. Consequently, $h_B/h=0.8$ among $h_B/hs$ considered in the study showed the lowest impact pressure.

혼합탱크 내의 임펠라 형태에 따른 유동 특성에 관한 수치해석 (Numerical Study on Flow Patterns in a Stirred Tank with Impeller Types)

  • 송길섭;오석영;오정진
    • 한국유체기계학회 논문집
    • /
    • 제5권2호
    • /
    • pp.29-35
    • /
    • 2002
  • The present study is concerned with the flow patterns induced by various impellers in a rectangular tank. Impellers are FBT (Flat blade turbine), PBT (Pitched blade turbine), Shroud turbine, Rushton turbine, and Helical ribbon turbine types. The solutions of flows in moving reference frames require the use of 'moving' cell zone. The moving zone approaches are based on MRF (Multiple reference frame), which is a steady-state approximation and sliding method, which is an unsteady-state approximation. Numerical results using two moving zone approaches we compared with experiments by Ranade & Joshi, which have done extensive LDA measurements of the flow generated by a standard six-bladed Rushton turbine in a cylindrical baffled vessel. In this paper, we simulated the flow patterns with above-mentioned moving zone approaches and impellers. Turbulence model used is RNG $k-{\epsilon}$ model. Sliding-mesh method is more effective than MRF for simulating the rectangular tank with inlet and outlet. RNG $k-{\epsilon}$ model strongly underestimates the velocity of experimental data and velocity by Chen & Kim's model, but it seems to be correctly predicted in overall distribution.

통합보존식 해석과 HCIB 법을 이용한 슬로싱 탱크 내부 갇힌 공기에 의한 압력 진동 모사 (Simulation of a Pulsating Air Pocket in a Sloshing Tank Using Unified Conservation Laws and HCIB Method)

  • 신상묵
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.271-280
    • /
    • 2021
  • The code developed using a pressure-based method for unified conservation laws of incompressible/compressible fluids is expanded to handle moving or deforming body boundaries using the hybrid Cartesian/immersed boundary method. An instantaneous pressure field is calculated from a pressure Poisson equation for the whole fluid domain, including the compressible gas region. The polytropic gas is assumed for the compressible fluid so that the energy equation is decoupled. Immersed boundary nodes are identified based on edges crossing body boundaries. The velocity vector is reconstructed at the immersed boundary node using an interpolation along the assigned local normal line. The developed code is validated by comparing the time histories of pressure and wave elevation for sloshing in a rectangular and a membrane-type tank. The validated code is applied to simulate air cushion effects in a rectangular tank under sway motion. Time variations of pressure fields are analyzed in detail as the air pocket pulsates. It is shown that the contraction and expansion of the air pocket dominate the pressure loads on the wall of the tank. The present results are in good agreement with other experimental and computational results for the amplitude and the decay of the pressure oscillations measured at the pressure gauges.

Moment of inertia of liquid in a tank

  • Lee, Gyeong Joong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.132-150
    • /
    • 2014
  • In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.

수평 양방향 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 특성 (Characteristics of Earthquake Responses of a Rectangular Liquid Storage Tanks Subjected to Bi-directional Horizontal Ground Motions)

  • 이진호;이세혁
    • 한국전산구조공학회논문집
    • /
    • 제33권1호
    • /
    • pp.45-53
    • /
    • 2020
  • 액체저장탱크의 지진 거동은 유체-구조물 상호작용에 의해 복잡하게 나타나므로, 이 시스템의 지진응답과 피해를 정확하게 예측하기 위해서는 이를 엄밀히 고려하여야 한다. 이 연구에서는 유체-구조물 상호작용을 엄밀히 고려하여 양방향 수평 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 해석을 수행하고 그 응답 특성을 분석하고자 한다. 이를 위해 지진하중 작용 시 발생하는 유체 동수압을 유한요소 기법을 사용하여 산정하고, 이 동수압을 구조물의 유한 요소에 작용하여 전체 시스템의 동적 거동을 모사한다. 예제 직사각형 액체저장탱크의 지진응답 해석을 통하여 대상 시스템의 동적 거동은 양방향 수평 지반운동이 작용하는 방위각에 의해 유의미한 영향을 받음을 확인할 수 있다. 그러므로 직사각형 액체저장탱크의 내진설계를 수행하거나 내진성능을 검토할 때는 이러한 특성을 고려하여야 할 것이다.

2D Finite element analysis of rectangular water tank with separator wall using direct coupling

  • Mandal, Kalyan Kumar;Maity, Damodar
    • Coupled systems mechanics
    • /
    • 제4권4호
    • /
    • pp.317-336
    • /
    • 2015
  • The present paper deals with the analysis of water tank with elastic separator wall. Both fluid and structure are discretized and modeled by eight node-elements. In the governing equations, pressure for the fluid domain and displacement for the separator wall are considered as nodal variables. A method namely, direct coupled for the analysis of water tank has been carried out in this study. In direct coupled approach, the solution of the fluid-structure system is accomplished by considering these as a single system. The hydrodynamic pressure on tank wall is presented for different lengths of tank. The results show that the magnitude of hydrodynamic pressure is quite large when the distances between the separator wall and tank wall are relatively closer and this is due to higher rotating tendency of fluid and the higher sloshed displacement at free surface.

Experimental Study on the Effect of Coupled Motions on the Sloshing in Rectangular Tank

  • Woo, Bong-K.;Kwon, Young-S.;Jo, Chul-H.;Seo, Hyun-W.
    • Journal of Ship and Ocean Technology
    • /
    • 제7권1호
    • /
    • pp.29-35
    • /
    • 2003
  • Intensive experimental investigation has been conducted on the characteristics of model tank with intruded flow. The remaining flow inside tank contribute to the dynamic behavior and further closely related to the stability of vessel as well. To understand the importance of the trapped flow and its dynamic effects a series of systematic tests were conducted using a bench tester that could generate periodic roll motion and also complex motions of combined roll-heave-sway. To accommodate experimental conditions and to create three degree freedom of motions, a bench tester was fabricated and verified. Having similarities in terms of flow trapped inside tank, theoretical approaches for A.R.T. were applied to the study. The major parameters including roll angle, period and flow height were varied in the experiments to obtain the characteristics of model tank.

실린더 구조물을 설치한 탱크 내부의 슬로싱 하중과 유동 특성 (Characteristics of sloshing load and flow inside a tank with cylinder structures)

  • 김기종;서현덕;김대겸
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.31-39
    • /
    • 2023
  • Sloshing of the fluid having a free surface produces an impact force on a tank wall subjected to external excitation. This paper investigates the effect of cylindrical structures in a rectangular sloshing tank under translational harmonic excitations. By varying the number of installed cylinders in the tank, the characteristics of the free-surface deformation is experimentally observed, and the peak pressure on the tank wall is extracted by threshold values. To predict the peak pressure, the numerical simulation is also conducted using smoothed particle hydrodynamics (SPH), and the peak values are compared with the experimental results. Furthermore, pressure and velocity fields in the tank and free-surface shape are analyzed at the moment of impact.

너클 형상에 따른 LNG 저장탱크 코너프로텍션 피로수명 예측 (Prediction of Fatigue Life for a 270,000 kl LNG Storage Tank According to Shape of Corner-protection Knuckle)

  • 이승림;이경민;김한상
    • 한국가스학회지
    • /
    • 제18권2호
    • /
    • pp.69-72
    • /
    • 2014
  • LNG 저장탱크의 9% Ni강 내부탱크가 파손되면 LNG가 유출되어 콘크리트 외부탱크가 LNG를 저장하게 되는데 이때 외부탱크의 내면과 외면의 온도차에 의해서 외부탱크 원통형 하단부에 큰 인장응력이 발생하게 된다. 이러한 온도차에 의해 발생되는 인장응력을 감소시키기 위해 단열재와 9% Ni 강재로 이루어진 코너프로텍션이 2차 방벽으로 설치된다. 본 눈문에서는 유한요소법을 이용하여 코너프로텍션의 직사각형 너클형상과 원형 너클형상에 따른 구조해석을 실시하여 Von-Mises 응력과 용접부의 피로수명을 예측하였다. 구조해석 결과 안전계수는 원형 너클이 직사각형 너클보다 23% 크게 나타났고, 피로수명은 원형 너클이 직각 너클보다 21% 크게 나타났다. 동 결과를 이용해서 향후 코너프로텍션의 수명평가 및 최적설계 등에 활용이 가능할 것이다.

Hydrodynamic pressures acting on the walls of rectangular fluid containers

  • Dogangun, Adem;Livaoglu, Ramazan
    • Structural Engineering and Mechanics
    • /
    • 제17권2호
    • /
    • pp.203-214
    • /
    • 2004
  • The dynamic response characteristics of a rectangular fluid container are investigated by using finite element method. The fluid is assumed to be linear-elastic, inviscid and compressible. A displacement-based fluid finite element was employed to allow for the effects of the fluid. A typical rectangular fluid container, which is used in recent studies, is considered for the numerical analysis. The North-South component of El Centro Earthquake records is used as input ground acceleration. Rigid and flexible fluid containers solutions are obtained for the chosen sample tank. Hydrodynamic pressures and sloshing motions are determined using Lagrangian fluid finite element. The results obtained from this study are compared with the results obtained by boundary-finite element method (BEM-FEM) and requirements of Eurocode-8. Based on the numerical analysis, some conclusions and discussions on the design considerations for rectangular fluid containers are presented.