• Title/Summary/Keyword: Rectangular Opening

검색결과 73건 처리시간 0.019초

개구부 설치를 위한 인위적 손상을 입은 전단벽에 관한 비선형 유한요소해석 (A Nonlinear Finite Element Analysis to Study the Behavior on Artificially Damaged R/C Shear Walls with Opening Configuration)

  • 한민기;박완신;김효진;최기봉;최창식;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.429-432
    • /
    • 2004
  • This paper discussed finite element method(FEM) models of the reinforced concrete rectangular shear walls with opening configuration and analysed under constant axial and monotonic lateral load using ABAQUS. The research comprises constitutive models to represent behavior of the materials that compose a wall on the basis of experimental data, development of techniques that are appropriate for analysis of reinforced concrete structures, verification, and calibration of the global model for reinforced concrete shear walls of increasing complexity. Results from the analyses of these FEM models offers significant insight into the flexural behavior of benchmark data.

  • PDF

Buckling and post-buckling behaviors of 1/3 composite cylindrical shell with an opening

  • Ma, Yihao;Cheng, Xiaoquan;Wang, Zhaodi;Guo, Xin;Zhang, Jie;Xu, Yahong
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.555-566
    • /
    • 2018
  • A 1/3 composite cylindrical shell with a central rectangular opening was axially compressed experimentally, and its critical buckling load and displacement, and strains were measured. A finite element model (FEM) of the shell with Hashin failure criteria was established to analyze its buckling and post-buckling behaviors by nonlinear Newton-Raphson method. The geometric imperfection sensitivity and the effect of side supported conditions of the shell were investigated. It was found that the Newton-Raphson method can be used to analyze the buckling and post-buckling behaviors of the shell. The shell is not sensitive to initial geometric imperfection. And the support design of the shell by side stiffeners is a good way to obtain the critical buckling load and simplify the experimental fixture.

보강(補强) 개구부(開口部)를 갖는 합성(合成)보의 거동(擧動)에 관한 연구(硏究) (A Study on the Behavior of Composite Beam With Reinforced Web Opening)

  • 김필중;최산호;양영성;김규석;김석중
    • 산업기술연구
    • /
    • 제11권
    • /
    • pp.17-25
    • /
    • 1991
  • A model for the strength of composite beams with reinforced web openings is presented. All of the models are based on the static theorem of ultimate strength of reinforced rectangular perforated composite beam and is compared to the test.

  • PDF

복합재 격자구조물의 점검창 형상에 따른 구조안전성 해석 (Structure Safety Analysis of Composite Lattice Structure with Inspection Window)

  • 김동건;배주찬;손조화;이상우
    • 한국추진공학회지
    • /
    • 제22권6호
    • /
    • pp.94-103
    • /
    • 2018
  • 발사체 및 유도무기 기체에 사용되는 복합재 격자구조물은 구조물에 작용하는 하중을 고려하여 최소한의 두께와 무게로 설계되는 구조물이다. 이를 위하여 실리콘 몰드에 탄소섬유를 와인딩하는 공정으로 격자구조물을 만들며, 이때 발사체 및 유도무기 기체 내부의 장비 등을 점검하기 위하여 점검창을 설치하는 것이 일반적으로 요구된다. 본 논문에서는 필라멘트 와인딩 공정으로 제작된 실린더형 격자구조물에 대하여 압축시험을 수행하고, 이 구조물에 대한 유한요소해석을 수행하여 얻은 해석 결과를 설치된 격자구조물에 대하여 유한요소해석을 수행하였다. 또한 구조물의 리브(Rib)와 노트(Knot)의 파손강도를 통해 육각형 점검창의 두께 및 위치를 변수로 선정하여 수행한 유한요소해석 결과는 다음과 같다; (1) 육각형 점검창의 안전계수가 사각형 점검창 보다 높게 계산되었으며, (2) 수직 점검창이 상단 헬리컬 리브의 중간에 위치할 때 안전계수가 높게 계산되었고, (3) 구조안전성 확보를 위하여 점검창의 두께를 증가시킬 경우 구조물의 불연속 부분에 응력집중이 발생하므로 유한요소 해석을 통해 안전계수가 가장 높은 점검창 형상을 선정해야 한다.

전기침이 구강동통에 미치는 영향에 관한 연구 (A STUDY ON THE EFFECT OF ELECTRO-ACUPUNCTURE ON ORAL PAIN)

  • 최용성;이창섭;송형근;이상호
    • 대한소아치과학회지
    • /
    • 제23권3호
    • /
    • pp.717-728
    • /
    • 1996
  • The effects of electro-acupuncture on the pain threshold and the amplitude of dEMG(di-gastric EMG) evoked by the noxious electric stimulation on teeth and gingiva in dogs were studied. Experiments were carried out with 10 dogs weighing 5-8kg. Each animal was anestheticed with Entobar given intraperitoneally in an initial dose of 30mg/kg. Maintenance dose of 5mg/kg/hr was given through a cannula, in the femoral vein, as required to keep up light anesthesia. Bipolar stimulating wire electrodes, 0.1mm in diameter, insulated except for tips, were inserted into the upper canine and palatal gingiva. Rectangular aluminium plate electrodes (15$\times$5mm) were placed on acupuncture points, called Yin-Hsiang, located at both sides of the upper jaw. Rectangular biphasic current pulses of 2Hz, with a $250{\mu}sec$ duration, were delivered for 15 minutes. The dEMG activities were recorded from the anterior belly of the digastric muscle(one of the jaw opening muscles) using bipolar wire electrodes. The magnitude of the jaw opening reflex at different intensties of electro-acupuncture(1volt 4volt and 10volt) was estimated by averaging the 30 superimposed dEMGs recorded on an oscilloscope and audiomonitor. Data were analysed statistically with ANOV A and paired t-test. The obtained results were as follows: 1. Pain thresholds were increased 7.7 %, 15.4 %, 17.3 % in the teeth and 11.1 %, 19.0 %, 25.4 % in the gingiva as the intensities of electro-acupuncture increased incrementally. 2. Amplitudes of dEMG were decreaed 8.3%, 22.4%, 27.4% in the teeth and 9.8%, 36.5%, 42.2 % in the gingiva as the intensities of electro-acupuncture increased incrementally. 3. Inhibition of pain responses by the electroacupuncture was more effective in the gingiva than in the teeth.

  • PDF

Numerical study on buckling of steel web plates with openings

  • Serror, Mohammed H.;Hamed, Ahmed N.;Mourad, Sherif A.
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1417-1443
    • /
    • 2016
  • Cellular and castellated steel beams are used to obtain higher stiffness and bending capacity using the same weight of steel. In addition, the beam openings may be used as a pass for different mechanical fixtures such as ducts and pipes. The aim of this study is to investigate the effect of different parameters on both elastic and inelastic critical buckling stresses of steel web plates with openings. These parameters are plate aspect ratio; opening shape (circular or rectangular); end distance to the first opening; opening spacing; opening size; plate slenderness ratio; steel grade; and initial web imperfection. The web/flange interaction has been simplified by web edge restraints representing simply supported boundary conditions. A numerical parametric study has been performed through linear and nonlinear finite element (FE) models, where the FE results have been verified against both experimental and numerical results in the literature. The web plates are subject to in-plane linearly varying compression with different loading patterns, ranging from uniform compression to pure bending. A buckling stress modification factor (${\beta}$-factor) has been introduced as a ratio of buckling stress of web plate with openings to buckling stress of the corresponding solid web plate. The variation of ${\beta}$-factor against the aforementioned parameters has been reported. Furthermore, the critical plate slenderness ratio separating elastic buckling and yielding has been identified and discussed for two steel grades of DIN-17100, namely: ST-37/2 and ST-52/3. The FE results revealed that the minimum ${\beta}$-factor is 0.9 for web plates under uniform compression and 0.7 for those under both compression and tension.

Interaction between opening space in concrete slab and non-persistent joint under uniaxial compression using experimental test and numerical simulation

  • Vahab Sarfarazi;Kaveh Asgari;Mehdi Kargozari;Pouyan Ebneabbasi
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.207-221
    • /
    • 2023
  • In this investigation, the interaction between opening space and neighboring joint has been examined by experimental test and Particle flow code in two dimension (PFC2D) simulation. Since, firs of all PFC was calibrated using Brazilian experimental test and uniaxial compression test. Secondly, diverse configurations of opening and neighboring joint were provided and tested by uniaxial test. 12 rectangular sample with dimension of 10 cm*10 cm was prepared from gypsum mixture. One quarter of tunnel and one and or two joint were drilled into the sample. Tunnel diameter was 5.5 cm. The angularities of joint in physical test were 0°, 45° and 90°. The angularities of joint in numerical simulation were 0°, 30°, 60°, -30°, -45°, -60° and its length were 2cm and 4cm. Loading rate was 0.016 m/s. Tensile strength of material was 4.5 MPa. Results shows that dominant type of crack which took place in the model was tensile cracks and or several shear bands develop within the model. The Final stress is minimum in the cases where oriented angle is negative. The failure stress decrease by decreasing the joint angle from 30° to 60°. In addition, the failure stress decrease by incrementing the joint angle from -30° to -60°. The failure stress was incremented by decreasing the number of notches. The failure stress was incremented by decreasing the joint length. The failure stress was incremented by decreasing the number of notches. Comparing experimental results and numerical one, showed that the failure stress is approximately identical in both conditions.

Device for Catheter Placement of External Ventricular Drain

  • Ann, Jae-Min;Bae, Hack-Gun;Oh, Jae-Sang;Yoon, Seok-Mann
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권3호
    • /
    • pp.322-324
    • /
    • 2016
  • To introduce a new device for catheter placement of an external ventricular drain (EVD) of cerebrospinal fluid (CSF). This device was composed of three portions, T-shaped main body, rectangular pillar having a central hole to insert a catheter and an arm pointing the tragus. The main body has a role to direct a ventricular catheter toward the right or left inner canthus and has a shallow longitudinal opening to connect the rectangular pillar. The arm pointing the tragus is controlled by back and forth movement and turn of the pillar attached to the main body. Between April 2012 and December 2014, 57 emergency EVDs were performed in 52 patients using this device in the operating room. Catheter tip located in the frontal horn in 52 (91.2%), 3rd ventricle in 2 (3.5%) and in the wall of the frontal horn of the lateral ventricle in 3 EVDs (5.2%). Small hemorrhage along to catheter tract occurred in 1 EVD. CSF was well drained through the all EVD catheters. The accuracy of the catheter position and direction using this device were 91% and 100%, respectively. This device for EVD guides to provide an accurate position of catheter tip safely and easily.

개구부를 갖는 콘크리트 전단벽의 탄성안정 (Elastic Stability of Perforated Concrete Shear Wall)

  • 김준희;김순철
    • 전산구조공학
    • /
    • 제11권1호
    • /
    • pp.251-259
    • /
    • 1998
  • 개구부를 갖는 콘크리트 전단벽을 두께가 얇은 직사각형 평판으로 모델화하였다. 판의 두가지 경계조건에 대한 안정해석 결과를 판좌굴계수 k로 표시하였다. 경계조건이 다른 변수로는 휨으로 인한 힘/연직하중비 .alpha., 수평 전단력/연직하중비 .betha. 및 개구부의 위치 및 크기 변화이다. 유한요소법에 의한 결과를 얻기 위하여 예제의 판을 27*9의 정사각형 요소로 분할하였으며 node에서 3가지 자유도를 갖는 c.deg. 유한요소를 택하였다. 일반적으로 개구부의 크기가 증가함에 따라 판 개구부가 판 중앙에서 자유연(free edge)으로 접근할수록 좌굴계수는 감소하는 현상을 보이고 있다.

  • PDF

Finite-element analysis and design of aluminum alloy RHSs and SHSs with through-openings in bending

  • Ran Feng;Tao Yang;Zhenming Chen;Krishanu Roy;Boshan Chen;James B.P. Lim
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.353-366
    • /
    • 2023
  • This paper presents a finite-element analysis (FEA) of aluminum alloy rectangular hollow sections (RHSs) and square hollow sections (SHSs) with circular through-openings under three-point and four-point bending. First, a finite-element model (FEM) was developed and validated against the corresponding test results available in the literature. Next, using the validated FE models, a parametric study comprising 180 FE models was conducted. The cross-section width-to-thickness ratio (b/t) ranged from 2 to 5, the hole size ratio (d/h) ranged from 0.2 to 0.8 and the quantity of holes (n) ranged from 2 to 6, respectively. Third, results obtained from laboratory test and FEA were compared with current design strengths calculated in accordance with the North American Specifications (NAS), the modified direct strength method (DSM) and the modified Continuous strength method (CSM). The comparison shows that the modified CSM are conservative by 15% on average for aluminum alloy RHSs and SHSs with circular through-openings subject to bending. Finally, a new design equation is proposed based on the modified CSM after being validated with results obtained from laboratory test and FEA. The proposed design equation can provide accurate predictions of flexural capacities for aluminum alloy RHSs and SHSs with circular through-openings.