• Title/Summary/Keyword: Rectangular Drawing

Search Result 90, Processing Time 0.03 seconds

Development of Program for the Intermediate ie Design in the Drawing of the Rectangular Rod (직사각재 인발 공정의 중간 금형 설계 프로그램 개발)

  • 김동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.95-98
    • /
    • 1999
  • In this study, a method to find the optimal intermediate die geometry for the multi-stage drawing process for the rectangular rod from a round bar is proposed and a program using the proposed method is developed. On the stage of the design of the intermediate die geometry, the virtual die was constructed using the initial billet as a inlet of the drawing die and the final product as a exit of that and the virtual die was divided by the number of pass. Divided die was transformed into the rectangular one which is the intermediate die geometry for the multi-stage rectangular drawing process. In order to verify the application of the proposed method on the real industrial product, the drawing of the rectangular rod from a round which composed two stage has been performed and simulated by the three dimensional rigid plastic finite element method.

  • PDF

Process Map for Improving the Dimensional Accuracy in the Multi-Stage Drawing Process of Rectangular Bar with Various Aspect Ratio (다양한 종횡비의 직사각바 다단 인발공정에서 치수정도 향상을 위한 프로세스 맵)

  • Ko, P.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.154-159
    • /
    • 2018
  • In the rectangular bar multi-stage drawing process, the cross-section dimensional accuracy of the rectangular bar varies depending on the aspect ratio and process conditions. It is very important to predict the dimensional error of the cross-section occurring in the multi-stage drawing process according to the aspect ratio of the rectangular bar and the half die angle of each pass. In this study, a process map for improving the dimensional accuracy according to the aspect ratio was derived in the drawing process of a rectangular bar. FE-simulation of the multi-stage shape drawing process was carried out with four types of rectangular bar. The results of the FE-simulation were trained to the nonlinear relationship between the shape parameters using an Artificial Neural Network (ANN), and the process maps were derived from them. The optimum half die angles were determined from the process maps on the dimensional accuracy. The validity of the suggested process map for aspect ratios 1.25~2:1 were verified through FE-simulation and experimentation.

Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio (세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계)

  • 박철성;구태완;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF

A Studyon the Drawing of Rectangular Rod from Round Bar by using Rigid Plastic FEM and Neural Network (강소성 유한요소법과 신경망을 이용한 직사각재 인발공정에 관한 연구)

  • Kim, Y.C.;Choi, Y.;Kim, B.M.;Choi, J.C.
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.331-339
    • /
    • 1999
  • In this study, to analyze the shaped drawing process from round bar, the practical conical die with considering die radius and bearing was defined by a mathematical expression, and also a simple technique for initial mesh generation to the shaped drawing process was proposed. The drawing of rectangular section from round bar, one of the shaped drawing process, has been simulated by using non-steady state 3D rigid plastic finite element method in order to evaluate the influence of semi-die angle and reduction in area to corner filling. Other process variables such as friction constant, rectangular ratio, die radius and bearing length were fixed during the simulation. An artificial neural network has been introduced to obtain the optimal process conditions which gave rise to a fast simulation.

  • PDF

A Study on the Drawability of Rectangular Deep Drawing of Sheet Metal using Local Heating (국부가열을 이용한 박판의 사각통 디이프 드로잉 성형에 관한 연구)

  • 박동환;김창호;강성수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.209-214
    • /
    • 1995
  • This paper describes that the effects of punch speed and temperatures of the die and the blank holder on the drawability are examined. Up to now, multi-stage of dies sets have been used generally at room temperature in deep drawing of rectangular shaped components. But using local heating, it is shown that one stage of die set was capable of deep drawing and the drawability was increased and sheet thickness of component was drawn somewhat uniformly. Rectangular deep drawing experiments on two kinds of stainless steel STS316L, STS430 of 1.0 mm thickness have been conducted using local heating. The limiting drawing height can be increased by heating the die and the blank holder up to 100 .deg. C at STS316L. Commercial lubricants hadn't an effect on drawability in rectangular deep drawing, but vinyl and teflon film had an effect on it.

  • PDF

Formability of Sheet Metal in Noncircular Cup Drawing(I) (for Rectangular Cross Section) (비원형 단면에 대한 판재 성형성(I) (직사각형 단면에 대하여))

  • Shin, J.H.;Kim, M.S.;Seo, D.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.84-95
    • /
    • 1994
  • The effects of punch and blank shapes in the rectangular cup drawing process are examined experimentally to improve the formabilities. For this purpose, three blank shapes which are h-bl., G-bl., and T-bl., and five punch shape factors which are the ratios of two adjacent side lengths in rectangular cross section are adopted. The constructing methods of the three blank shapes are as follows. The h-bl. is designed by slip-line theory, and the G-bl. is selected for the similar shape to the punch. The T-bl. is obtained by the drawing method which is introduced in the technical references. The five punch shape factors are selected for length/width=1, 1.25, 1.5, 1.75 and 2. The experimental procedures are performed for all the above forming conditions to investigate and compare the formabilities. As a result, it is verified experimentally that the rectangular cups drawn by the h-bl. are more ideal than those drawn by G-bl. and T-bl.. They have not only higher limiting drawing ratio, more uniformity in drawn cup heights and more ideal thickness distributions, but also need relatively less maximum drawing forces.

  • PDF

Experimental Study on the Formability of Simultaneous Deep Drawing of Circular and Rectangular Cups with AZ31 Magnesium Alloy (AZ31 마그네슘 판재의 더블 싱크형 딥드로잉 공정의 성형성에 관한 실험적 연구)

  • Kwon, K.T.;Kang, S.B.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.586-593
    • /
    • 2008
  • In warm press forming of magnesium alloy sheet, it is important to control the sheet temperature by heating the sheet in closed die. When forming a commercial AZ31 magnesium alloy sheets which are 0.5mm and 1.0mm thick, respectively, time arriving at target temperature and temperature variation in magnesium alloy sheet have been investigated. The deep drawing process with rectangular shape alone at the first stage and with both circular and rectangular shapes at the second stage was employed. At the first stage, through deep drawing process with rectangular shape alone according to various forming temperature($150{\sim}350^{\circ}C$) and velocity($0.1{\sim}1.0mm/s$), optimum forming condition was obtained. At the second stage, deep drawing process with the circular and rectangular shapes were performed following deep drawn square cups with Limited Drawing Height(LDH) obtained at the first stage. Here, clearance which is defined a gap between the die and the punch including sheet was set to ratio of 20, 40 and 100% to thickness in sheet. Accordingly, temperature, velocities, and clearances suitable for forming were suggested through investigating the thickness variation of the product.

Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio (세장비가 큰 사각컵 디프 드로잉의 유한요소 해석)

  • Ku T.W.;Ha B.K.;Song W.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

An Experimental Approach and Finite Element Analysis on Rectangular Cup Drawing Process of Milli-Component Forming (소형부품의 사각 컵 드로잉 성형 해석에 관한 실험적 연구)

  • 구태완;강범수
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.471-477
    • /
    • 2001
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about smaller than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiments. Special containers or cases of cellular phone vibrator to save installation space are produced by rectangular-shaped drawing. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF

The characterization of Bi-2223/Ag tape fabricated by using the rectangular dies (사각 다이스를 이용한 Bi-2223/Ag 선재의 특성평가)

  • 정재훈;유재무;고재웅;김영국;신평우
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.168-171
    • /
    • 2003
  • It was known that properties of superconducting tapes could be influenced by mechanical processing method. In this presentation, the effect of drawing method on the final properties of superconductor tape has been systematically studied. Firstly, BSCCO/Ag tapes have been fabricated via two-stage drawing method and conventional rolling process. The two-stage drawing process consists of circular dies drawing and rectangular dies drawing. Important parameters such as fill factor and critical current values of fully processed superconducting tapes have been evaluated to elucidate the effect of drawing method.

  • PDF