• Title/Summary/Keyword: Rectangular Deep Drawing

Search Result 44, Processing Time 0.02 seconds

Prediction of Spring Back and Formability in 3-D Stamping by An Explicit Code (Explicit Code에 의한 Stamping시 스프링백 및 성형성 예측)

  • Kim, Heon-Young;Kim, Joong-Jae
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.84-96
    • /
    • 1994
  • Simulation of 3 dimensional large irregularly shaped stamping process by a dynamic approach, based on an explicit time integration scheme, has been shown to be highly efficient and robust in comparison to traditional, implicit, quasi-static ones. The objective of the work is to evaluate the results from explicit code in application to deep drawing of rectangular cup and stamping of automotive front fender, in which deformation, force, thickness distribution are calculated. The method of predicting spring back and formability by and explicit code are suggested and applied to the processes.

  • PDF

Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology (강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF

Forging Die Design for Vent Forming of Square Cup Battery Case (사각 컵 배터리 케이스 바닥 벤트 성형을 위한 단조 금형 설계)

  • Lee, Sang-Hoon;Kwon, Soon-Ho;Chung, Hoon;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.330-335
    • /
    • 2017
  • The demand for electric motor fuel cells has surged in the automotive industry, leading to a recent increase in the demand for square aluminum cans used as fuel cell battery casings. The air vent located on the bottom of the rectangular battery casing prevents large explosions by intermittent pressure release prior to the accumulation of abnormally high pressures. Conventionally, the square cup battery casing is produced via six-step deep drawing, with the outer shape of the vent being manufactured by welding to the square battery casing. On the other hand, this study directly incorporated the air vent outlet into the bottom surface of the rectangular casing. The product of a coupled finite element analysis technique applying the thickness and contour generated from the square cup multi-step deep drawing formation analysis was used as the forging input shape. The results yielded increased prediction accuracy and the advanced prediction of defects, such as swelling and fracture. Based on the results of the initial analyses, two of the generated forging shapes were determined to be suitable, with the optimal forging shape being determined by molding analysis. The results presented here were validated by mold fabrication and a subsequent comparison of the actual and analytical results.

An Improved Scheme for the Blank Holding Force in 3-D Sheet Metal Forming Analysis (3차원 박판금속 성형해석에서의 블랭크 홀딩력 적용방법에 관한 연구)

  • Choi, Tae-Hoon;Huh, Hoon;Lee, Choong-Ho
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.93-97
    • /
    • 1997
  • Since the modified membrane element has the same external appearance as the ordinary membrane element, it is not able to apply the thickness variation of sheet metal in the blank holder to the contact treatment and the equally distributed blank holding force should be inevitably imposed on sheet metal along the periphery regardless of the contact status. But sheet metal does not contact with the blank holder at the periphery, nor the blank holding force is distributed uniformly along the boundary. To impose the blank holding force properly, the scheme is improved so that the blank holding force at each node imposed on sheet metal is dependent on the calculated thickness derivation and a state of equilibrium with the total blank holding force. The validity of the improved scheme is demonstrated with the simulation of cylindrical and rectangular cup deep drawing.

  • PDF