• Title/Summary/Keyword: Rectangular Cylinder

검색결과 118건 처리시간 0.022초

Numerical studies of unsteady flow field and aerodynamic forces on an oscillating 5:1 rectangular cylinder in a sinusoidal streamwise flow

  • Ma, Ruwei;Zhou, Qiang;Wang, Peiyuan;Yang, Yang;Li, Mingshui
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.91-100
    • /
    • 2022
  • Numerical simulations are conducted to investigate the uniform flow (UF) and sinusoidal streamwise flow (SSF) over an oscillating 5:1 rectangular cylinder with harmonic heaving motion at initial angles of attack of α = 0° and 3° using two-dimensional, unsteady Reynolds-averaged Navier-Stokes (URANS) equations. First, the aerodynamic parameters of a stationary 5:1 rectangular cylinder in UF are compared with the previous experimental and numerical data to validate the capability of the computationally efficient two-dimensional URANS simulations. Then, the unsteady flow field and aerodynamic forces of the oscillating 5:1 rectangular cylinder in SSF are analysed and compared with those in UF to explore the effect of SSF on the rectangular cylinder. Results show that the alternative vortex shedding is disturbed by SSF both at α = 0° and 3°, resulting in a considerable decrease in the vortex-induced force, whereas the unsteady lift component induced by cylinder motion remains almost unchanged in the SSF comparing with that in UF. Notably, the strong buffeting forces are observed at α = 3° and the energy associated with unsteady lift is primarily because of the oscillations of SSF. In addition, the components of unsteady lift induced by the coupling effects of SSF and cylinder motion are discussed in detail.

자유 낙하하는 사각 실린더 주위의 유동 구조 (Flow Structures Around a Freely-falling, Rectangular Cylinder)

  • 전충호;이창열;윤현식
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.8-15
    • /
    • 2010
  • The flow around a two-dimensional, rectangular cylinder that is freely falling in a channel was simulated using the immersed boundary method with direct forcing to determine the interactions between the fluid and the structure. The results of the present study were in good agreement with previous experimental results. Regardless of the H/L ratio (where H and L are the height and width of the rectangular cylinder, respectively), the flow structures had essentially the same pattern as the two symmetrical circulations that form about the horizontal center of the cylinder, with those centers located at each lateral position near the wake. When the cylinder approaches very close to the bottom, a jet-like flow appeared between the bottom of the rectangular cylinder and the channel. When the jet-like flow goes through the channel, surrounding fluids are sucked into this jet, forming the secondary vortices.

벽면에 근접한 사각주 후면의 와류 유동장 수동제어 (Passive Control of the Vortex Shedding behind a Rectangular Cylinder Near a Wall)

  • 이보성;김태윤;이도형;이동호
    • 한국항공우주학회지
    • /
    • 제32권6호
    • /
    • pp.16-22
    • /
    • 2004
  • 지면엔 근접한 사각주 후면에서 발생하는 비정상 와류 배출은 지상 운송체, 교량, 건물 등의 항력 증가뿐 아니라, 동안정성에도 큰 영향을 미친다. 비압축성 평균 Navier-Stokes 방정식에 수정된 ${\varepsilon}-SST$ 난류 모델을 적용하여 사각주 하부와 지면과의 간극 유동을 해석하였다. 사각주 후류에서 와류가 발생하는 경우에는 간극에서의 평균 최대 속도가 억제된 경우에 비하여 높으며, 또한 최대 속도의 위치 또한 사각주 하부에 근접한 것을 확인하였다. 본 연구에서는 사각주 하부에 수평, 수직의 펜스를 설치하는 수동 제어기법을 적용하여 사각 주 후류의 와류 배출용 억제할 수 있다.

Numerical studies on non-shear and shear flows past a 5:1 rectangular cylinder

  • Zhou, Qiang;Cao, Shuyang;Zhou, Zhiyong
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.379-397
    • /
    • 2013
  • Large Eddy Simulations (LES) were carried out to investigate the aerodynamic characteristics of a rectangular cylinder with side ratio B/D=5 at Reynolds number Re=22,000 (based on cylinder thickness). Particular attention was devoted to the effects of velocity shear in the oncoming flow. Time-averaged and unsteady flow patterns around the cylinder were studied to enhance understanding of the effects of velocity shear. The simulation results showed that the Strouhal number has no significant variation with oncoming velocity shear, while the peak fluctuation frequency of the drag coefficient becomes identical to that of the lift coefficient with increase in velocity shear. The intermittently-reattached flow that features the aerodynamics of the 5:1 rectangular cylinder in non-shear flow becomes more stably reattached on the high-velocity side, and more stably separated on the low-velocity side. Both the mean and fluctuating drag coefficients increase slightly with increase in velocity shear. The mean and fluctuating lift and moment coefficients increase almost linearly with velocity shear. Lift force acts from the high-velocity side to the low-velocity side, which is similar to that of a circular cylinder but opposite to that of a square cylinder under the same oncoming shear flow.

사각 덕트 계통에서 유동과 열전달의 수치계산과 실험의 비교 (COMPARISONS BETWEEN MEASURED AND COMPUTED FLUID FLOWS AND HEAT TRANSFER IN RECTANGULAR DUCT SYSTEM)

  • 윤영환;김경환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.67-74
    • /
    • 2005
  • Fluid flow and heat transfer in rectangular duct system are measured and computed by commercial software of Star-CD for comparison between them. Three rectangular systems are investigated in this study. Those are a rectangular duct with 90 degree bended elbow, a rectangular duct with two branchs, and a circular cylinder in a rectangular duct. But heat transfer is studied only for last system. These investigations show us that the numerical solutions predict satisfactorily design factors (K-factor for the elbowed duct, distributions of flow rates into each branch from a duct, and Nusselt number around circular cylinder) even though there are some disagreements in velocity profiles and turbulent kinetic energy.

  • PDF

Numerical Simulation of Breaking Waves around a Two-Dimensional Rectangular Cylinder Piercing Free Surface

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • 제5권4호
    • /
    • pp.29-43
    • /
    • 2001
  • In this paper, free surface flows around an advancing two-dimensional rectangular cylinder piercing the free surface are studied using numerical and experimental methods. Especially, wave breaking phenomenon around the cylinder is treated in detail. A series of numerical simulations and experiments were performed for the purpose of comparison. For the numerical simulations, a finite difference method was adopted with a rectangular grid system, and the variation of the free surface was computed by the marker density method. The computational results are compared with the experiments. It is confirmed that the present numerical method is useful for the numerical simulation of nonlinear free surface waves around a piercing body.

  • PDF

Lattice-Boltzmann Simulation of Fluid Flow around a Pair of Rectangular Cylinders

  • Taher, M.A.;Baek, Tae-Sil;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.62-70
    • /
    • 2009
  • In this paper, the fluid flow behavior past a pair of rectangular cylinders placed in a two dimensional horizontal channel has been investigated using Lattice-Boltzmann Method(LBM). The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK(Bhatnagar-Gross-Krook)model. Streamlines, velocity, vorticity and pressure contours are provided to analyze the important characteristics of the flow field for a wide range of non dimensional parameters that present in our simulation. Special attention is paid to the effect of spacing(d) between two cylinders and the blockage ratio A(=h/H), where H is the channel height and h is the rectangular cylinder height. for different Reynolds numbers. The first cylinder is called upstream cylinder and the second one as downstream cylinder. The downstream fluid flow fields have been more influenced by its blockage ratios(A) and Reynolds numbers(Re) whereas the upstream flow patterns(in front of downstream cylinder) by the gap length(d) between two cylinders. Moreover, it is observed that after a certain gap, both upstream and downstream flow patterns are almost similar size and shape. The simulation result has been compared with analytical solution and it is found to be in excellent agreement.

모드매칭법을 이용한 금속의 Half Cylinder가 있는 구형 도파관의 산란 특성 해석 (Analysis of Scattering Characteristics of a Rectangular Waveguide with Conducting Half Cylinders using the Mode Matching Method)

  • 김원기;천동완;김상태;신철재
    • 한국통신학회논문지
    • /
    • 제29권8A호
    • /
    • pp.962-971
    • /
    • 2004
  • 본 논문에서는 모드매칭법을 이용하여 구형 도파관 내부에 금속의 Half cylinder에 의한 산란 특성을 해석하는 수치적 해석법을 제시하였고, Half cylinder의 반경 변화와 회전에 따른 산란 특성을 계산하였다. 또한, 제안된 방법이 일반산란계수법과 연계되었을 때 여러 개의 Half cylinder가 위치한 경우에도 적용 가능함을 보였다. 2 pole 필터의 계산 결과로부터 Half cylinder의 회전에 따라 공진 주파수의 조정이 가능함을 알 수 있었다. 계산 결과는 HFSS의 결과와 비교하여 잘 일치하였다. 본 논문에서 제시한 구조와 해석법은 튜닝 소자로 금속의 Half cylinder를 사용하는 도파관 관련 부품의 설계에 쉽게 이용될 수 있다.

종횡비 변화에 따른 사각실린더 주위의 유동 특성에 관한 수치적 연구 (A Numerical Study on Flow Characteristics Around Rectangular Cylinder with Different Width-to-height Ratios)

  • 박용갑;손창민
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.523-529
    • /
    • 2010
  • We investigate two-dimensional laminar flow around rectangular cylinders placed in a uniform stream. Numerical simulations are performed, using finite volume method, in the ranges of $50{\leq}Re{\leq}150$ and $0.1{\leq}W/H{\leq}1.0$, where Re and W/H are the Reynolds number and the width-to-height ratio, respectively. The immersed boundary method is used to handle the rectangular cylinder in a rectangular grid system. Comparisons with the previous results show good agreement in Strouhal number, drag and lift coefficient. The present study reports the detailed information of flow structure at different width-to-height ratios in the ranges of $50{\leq}Re{\leq}150$.

사각던트 내에서 원형 실린더를 지나는 유체유동의 측정 및 수치해석에 관한 연구 (Study on Measurement and Numerical Analysis for Fluid Flow past a Circular Cylinder in Rectangular Duct)

  • 김경환;윤영환
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1095-1102
    • /
    • 2003
  • Flow characteristics of turbulent steady fluid flow past a cylinder in rectangular duct are measured by 5 W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between the measurement and computation. The turbulent models applied in the computations are standard K-epsilon model, RNG K-epsilon model and Chen K-epsilon model. Acurracy of standard K-epsilon model is a little bit better than acurracies of other models even though those models have almost the same order of error compared to measured data. The computations predict satisfactorily the measured velocity profiles at middle section of the circular cylinder before the fluid flow diverges. However, there are some disagreements between them at down stream from the circular cylinder.