• Title/Summary/Keyword: Rectangle Detection

Search Result 53, Processing Time 0.019 seconds

Comic Image Normalization using the gradient Radon Transform based on OpenCL implementation (OpenCL 기반의 그래디언트 라돈변환을 이용한 만화영상의 정규화)

  • Kim, Dong-Keun;Jeon, Hyeok-June;Hwang, Chi-Jung
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.221-230
    • /
    • 2011
  • Digital comic images are one of popular contents on the Internet. Usually, they are scanned from comic books by digital scanners. Without post-processing, they may have different sizes, skews and margins other than contents at the boundary. To normalize the size of their contents without the skews and margins is an important step in comic image analysis and application such as content-based comic image retrieval system. In this paper, we propose a method to detect a box frame in comic images by extracting of line segments using the gradient Radon transform. The box frame in comic images is the maximum rectangle which consists of contents without margins. We use the detected box frame to normalize the size of comic images and to make them no skew. In addition, the proposed method is implemented by OpenCL to speed up the detection of the line segments. Experimental results show that our proposed method effectively detects the box frame in comic images.

A Method of Adative Background Image Generation for Object Tracking (객체 추적을 위한 적응적 배경영상 생성 방법)

  • Jee, Jeong-Gyu;Lee, Kwang-Hyoung;Kim, Yong-Gyun;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.329-338
    • /
    • 2003
  • Object tracking in a real time image is one of Interesting subjects in computer vision and many practical application fields past couple of years. But sometimes existing systems cannot find object by recognize background noise as object. This paper proposes a method of object detection and tracking using adaptive background image in real time. To detect object which does not influenced by illumination and remove noise in background image, this system generates adaptive background image by real time background image updating. This system detects object using the difference between background image and input image from camera. After setting up MBR(minimum bounding rectangle) using the internal point of detected object, the system tracks object through this MBR. In addition, this paper evaluates the test result about performance of proposed method as compared with existing tracking algorithm.

Study on Obstacle Avoidance Algorithm of Autonomous Mobile Robots Using Infrared Sensor and Camera (적외선센서와 카메라를 이용한 자율주행로봇의 장애물회피 알고리즘 연구)

  • Jung Woo Sohn;Ho Sung Yun;Wansu Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.192-198
    • /
    • 2023
  • This paper proposes an algorithm for autonomous mobile robots to effectively navigate obstacles. In order to detect obstacles infrared sensors and cameras are employed. The infrared sensor is utilized to calculate the distance to obstacles while the captured images from the camera are used to determine the width of obstacles. To compute obstacle width, binary image processing, contour detection, and the minimum area rectangle technique are employed. Using the distance to obstacles and obstacle width, the avoidance angle is calculated, and this angle is incorporated into steering control. The proposed obstacle avoidance algorithm was implemented on an autonomous robot, and experimental results demonstrated a maximum reduction in avoidance time by 8.5 seconds compared to using only infrared sensors when the obstacle width is 30cm.