• Title/Summary/Keyword: Recover Energy

Search Result 300, Processing Time 0.028 seconds

Binary Doping of N-B and N-P into Graphene: Structural and Electronic properties

  • Kim, Hyo seok;Kim, Seong Sik
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.256-259
    • /
    • 2013
  • We investigate co-doping effects of conjugated P-N B-N with increasing of N concentration in the graphene sheets using a first principles based on the density functional theory. N doping sites of the graphene consider two possible sites (pyridinic and porphyrin-like). Energy calculation shows that additional doping of B atom in the porphyrin-like N doped graphene ($V+B-N_x$) is hard to form. At the low chemical potential of N, one N atom with additional doping in the graphene ($V+P-N_1$, $P/B-N_1$) has low formation energy on the other hand at high chemical potential of N, high concentration of N ($V+P-N_4$, $P/B-N_3$) in the graphene is governing conformation. From the results of electronic band structure calculation, it is found that $V+P-N_4$ and $P/B-N_3$ cases change the Fermi energy therefore type change is occurred. On the other hand, the cases of $V+P-N_1$ and N+B recover the electronic structure of pristine graphene.

  • PDF

Operating Method of BESS for Providing AGC Frequency Control Service Considering Its Availability Maximization (배터리 가용성 극대화를 고려한 BESS의 AGC 주파수제어 추종운영방안)

  • Choi, Woo Yeong;Yu, Ga Ram;Kook, Kyung Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1161-1168
    • /
    • 2016
  • Battery energy storage system(BESS) attract the attention of the power system operators with its fast response to a disturbance in spite of its limited energy capacity. This paper proposes the operating method of BESS for following the Automatic Generation Control(AGC) frequency control which is centrally distributed by a system operator. As BESS needs to just meet the control requirement from the system operator, it should be able to properly manage the state of charge(SOC) of BESS to be available to control signal. For doing these, the proposed method distributes the control requirement to available batteries in proportion to its SOC. In addition, unavailable batteries are controlled to recover the SOC to an appropriate range, and the recovering power is supplied by available batteries meeting the control requirement. Moreover, the proposed method manages the efficiency of power conversion system (PCS) by limiting the number of PCS to be assigned for the low control requirement. Finally, the case studies are carried out to verify the effectiveness of proposed strategy.

Chemical Inhibition of Cell Recovery after Irradiation with Sparsely and Densely Ionizing Radiation

  • Evstratova, Ekaterina S.;Kim, Jin-Hong;Lim, Young-Khi;Kim, Jin Kyu;Petin, Vladislav G.
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.199-204
    • /
    • 2016
  • The dependence of cell survival on exposure dose and the duration of the liquid-holding recovery (LHR) was obtained for diploid yeast cells irradiated with ionizing radiation of different linear energy transfer (LET) and recovering from radiation damage without and with various concentrations of cisplatin - the most widely used anticancer drug. The ability of yeast cells to recover from radiation damage was less effective after cell exposure to high-LET radiation, when cells were irradiated without drug. The increase in cisplatin concentration resulted in the disappearance of this difference whereas the fraction of irreversible damage was permanently enlarged independently of radiation quality. The probability of cell recovery was shown to be constant for various conditions of irradiation and recovery. A new mechanism of cisplatin action was suggested according with which the inhibition of cell recovery after exposure to ionizing radiations was completely explained by the production of irreversible damage.

Development of a neural network method for measuring the energy spectrum of a pulsed electron beam, based on Bremsstrahlung X-Ray

  • Sohrabi, Mohsen;Ayoobian, Navid;Shirani, Babak
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.266-272
    • /
    • 2021
  • In the pulsed electron beam generators, such as plasma focus devices and linear induction accelerators whose electron pulse width is in the range of nanosecond and less, as well as in cases where there is no direct access to electron beam, like runaway electrons in Tokamaks, measurement of the electron energy spectrum is a technical challenge. In such cases, the indirect measurement of the electron spectrum by using the bremsstrahlung radiation spectrum associated with it, is an appropriate solution. The problem with this method is that the matrix equation between the two spectrums is an ill-conditioned equation, which results in errors of the measured X-ray spectrum to be propagated with a large coefficient in the estimated electron spectrum. In this study, a method based on the neural network and the MCNP code is presented and evaluated to recover the electron spectrum from the X-ray generated by collision of the electron beam with a target. Multilayer perceptron network showed good accuracy in electron spectrum recovery, so that for the X-ray spectrum with errors of 3% and 10%, the network estimated the electron spectrum with an average standard error of 8% and 11%, on all of the energy intervals.

Research on recycling technology for spent cathode materials of lithium-ion batteries using solid-state synthesis (고상법을 활용한 리튬이차전지 폐양극활물질 재활용 기술 연구)

  • Donghun Kang;Joowon Im;Minseong Ko
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.259-264
    • /
    • 2023
  • As the demand for lithium-ion batteries, a key power source in electric vehicles and energy storage systems, continues to increase for achieving global carbon neutrality, there is a growing concern about the environmental impact of disposing of spent batteries. Extensive research is underway to develop efficient recycling methods. While hydrometallurgy and pyrometallurgy methods are commonly used to recover valuable metals from spent cathode materials, they have drawbacks including hazardous waste and complex processes. Hence, alternative recycling methods that are environmentally friendly are being explored. However, recycling spent cathode materials still remains complex and energy-intensive. This study focuses on a novel approach called solid-state synthesis, which aims at regenerating the performance of spent cathode materials. The method offers a simpler process and reduces energy consumption. Optimal heat treatment conditions were identified based on experimental results, contributing to the development of sustainable recycling technologies for lithium-ion batteries.

Membrane Based Recovery of Valuable Lithium Metals from Lithium Ion Battery Waste (리튬이온전지 폐기물로부터 가치 있는 리튬금속을 멤브레인 기반으로 회수)

  • Togzhan Tangbay;Rajkumar Patel
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • Growing demand on clean energy to control environmental pollution is growing rapidly. Rechargeable battery such as lithium ion battery is excellent source of clean energy but there is rapid depletion of lithium metal due to high demand and supply mismatch. Recovery of the precious metal from the battery waste is one of the possible solution along with the environmental pollution control. Membrane based separation method is highly successful commercial process available to recover lithium from the waste. This work will cover various methods reported recently and will be compiled in the form of a review.

Electromagnetic Retarder's Power Recovery Device and Voltage Control (전자기형 리타더의 전력회수장치 및 전압제어)

  • Jung, Sung-Chul;Yoon, In-Sik;Ko, Jong-Sun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.396-403
    • /
    • 2016
  • Usually, large-sized buses and trucks have a very high load. In addition, frequent braking during downhill or long-distance driving, causes the conventional method using the brake friction to have a problem in safety because of brake fade and brake burst phenomenon. Auxiliary brakes dividing the braking load is essential. Hence, environment-friendly auxiliary brakes, such as contactless brake rather than the engine auxiliary brake system are needed. A study aimed at improving the energy efficiency by recharging electric energy with changing mechanical to electrical energy that occurs when braking is actively in progress. In this paper, the voltage control method is utilized to recover the electric energy generated in the electromagnetic retarder instead of the eddy current. To regenerate the braking energy into the electrical energy, the resonant L-C circuit is configured in the retarder. The voltage generated in the retarder is simply modeled as a transformer. However, retarder voltage control in this paper is simulated by modeling the induction generator because this induction generator modeling is more practical than transformer modeling. The changes in the voltage of the resonance circuit, which depends on the switch pulse duration of the control device, were analyzed. A PI controller algorithm to control this voltage is proposed. The feasibility of modeling retarder and voltage controller are shown by using MATLAB Simulink in this paper.

A Study on the Flux and Heat Transfer of Direct Contact Type Module Applied for a Pilot Scale Membrane Distillation Process (파일럿 규모 막 증발 공정 적용을 위한 직접 접촉식 모듈의 투과유속 및 열에너지 이동에 관한 연구)

  • Kim, Seung Hwan;Kim, Se Woon;Lee, Dong Woo;Cho, Jin Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.229-236
    • /
    • 2017
  • In this study, a direct contact membrane module was manufactured to be used in a pilot scale membrane distillation process to treat $3m^3/day$ of the digestate produced from anaerobic digestion of livestock manure. In order to investigate the performance of the membrane module, permeate flux was measured with and without spacer inside the module under various condition of temperature difference and cross flow velocity (CFV) through the membrane surfaces. Flux recovery rate after chemical cleaning was also investigated by applying three different cleaning methods. Additionally, thermal energy consumption was theoretically simulated based on actual pilot plant operation conditions. As results, we observed flux of the module with spacer was almost similar to the theoretically predicted value because the installation of spacer reduced the channeling effect inside the module. Under the same operating condition, the permeate flux also increased with increasing temperature difference and CFV. As a result of chemical in-line cleaning using NaOCl and citric acid for the fouled membranes, the recovery rate was 83.7% compared to the initial flux when NaOCl was used alone, and 87% recovery rate was observed when only citric acid was used. However, in the case of using only citric acid, the permeate flux was decreased at a rapid rate. It seemed that a cleaning by NaOCl was more effective to recover the flux of membrane contaminated by the organic matter as compared to a cleaning by citric acid. The total heat energy consumption increased with increasing CFV and temperature difference across the membrane. Thus, further studies should be intensively conducted to obtain a high permeate flux while keeping the energy consumption to a minimum for a practical application of membrane distillation process to treat wastewater.

Effect of Cl2 on Electrodeposition Behavior in Electrowinning Process

  • Kim, Si Hyung;Kim, Taek-Jin;Kim, Gha-Young;Shim, Jun-Bo;Paek, Seungwoo;Lee, Sung-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.73-73
    • /
    • 2017
  • Pyroprocessing at KAERI (Korea Atomic Energy Research Institute) consists of pretreatment, electroreduction, electrorefining and electrowinning. SFR (Sodium Fast Reactor) fuel is prepared from the electrowinning process which is composed of LCC (Liquid Cadmium Process) and Cd distillation et al. LCC is an electrochemical process to obtain actinides from spent fuel. In order to recover actinides inert anodes such as carbon material are used, where chlorine gas ($Cl_2$) evolves on the surface of the carbon material. And, stainless steel (SUS) crucible should be installed in large-scale electrowinning system. Therefore, the effect of chlorine on the SUS material needs to be studied. LiCl-KCl-$UCl_3$-$NdCl_3$-$CeCl_3$-$LaCl_3$-$YCl_3$ salt was contained in 2 kinds of electrolytic crucible having an inner diameter of 5cm, made of an insulated alumina and an SUS, respectively. And, three kinds of electrodes such as cathode, anode, reference were used for the electrochemical experiments. Both solid tungsten (W) and LCC were used as cathodes. Cd of 45 g as the cathode material was contained in alumina crucibles for the deposition experiments, where the crucible has an inner diameter of 3 cm. Glassy carbon rod with the diameter of 0.3 cm was employed as an anode, where shroud was not used for the anode. A pyrex tube containing LiCl-KCl-1mol% AgCl and silver (Ag) wire having a diameter of 0.1cm was used as a reference electrode. Electrodeposition experiments were conducted at $500^{\circ}C$ at the current densities of $50{\sim}100mA/cm^2$. In conclusion, Fe ions were produced in the salt during the electrodeposition by the reaction of chlorine evolved from the anode and Fe of the SUS crucible and thereby LCC system using SUS crucible showed very low current efficiencies compared with the system using the insulated alumina crucible. Anode shroud needs to be installed around the glassy carbon not to influence surrounding SUS material.

  • PDF

A Novel Radiation-Resistant Strain of Filobasidium sp. Isolated from the West Sea of Korea

  • Singh, Harinder;Kim, Haram;Song, Hyunpa;Joe, Minho;Kim, Dongho;Bahn, Yong-Sun;Choi, Jong-Il;Lim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1493-1499
    • /
    • 2013
  • A novel radiation-resistant Filobasidium sp. yeast strain was isolated from seawater. Along with this strain, a total of 656 yeast isolates were purified from seawater samples collected from three locations in the West Sea of Korea and assessed for their radiation tolerance. Among these isolates, five were found to survive a 5 kGy radiation dose. The most radiation-resistant strain was classified as Filobasidium sp. based on 18S rDNA sequence analysis and hence was named Filobasidium RRY1 (Radiation-Resistant Yeast 1). RRY1 differed from F. elegans, which is closely related to RRY1, in terms of the optimal growth temperature and radiation resistance, and was resistant to high doses of ${\gamma}$-ionizing radiation ($D_{10}$: 6-7 kGy). When exposed to a high dose of 3 kGy irradiation, the RRY1 cells remained intact and undistorted, with negligible cell death. When these irradiated cells were allowed to recover, the cells fully repaired their genomic DNA within 3 h of growth recovery. This is the first report in which a radiation-resistant response has been investigated at the physiological, morphological, and molecular levels in a strain of Filobasidium sp.