• Title/Summary/Keyword: Reconstruction error

Search Result 431, Processing Time 0.043 seconds

Low-complexity Sampling Set Selection for Bandlimited Graph Signals (대역폭 제한 그래프신호를 위한 저 복잡도 샘플링 집합 선택 알고리즘)

  • Kim, Yoon Hak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1682-1687
    • /
    • 2020
  • We study the problem of sampling a subset of nodes of graphs for bandlimited graph signals such that the signal values on the sampled nodes provide the most information in order to reconstruct the original graph signal. Instead of directly minimizing the reconstruction error, we focus on minimizing the upper bound of the reconstruction error to reduce the complexity of the selection process. We further simplify the upper bound by applying useful approximations to propose a low-weight greedy selection process that is iteratively conducted to find a suboptimal sampling set. Through the extensive experiments for various graphs, we inspect the performance of the proposed algorithm by comparing with different sampling set selection methods and show that the proposed technique runs fast while preserving a competitive reconstruction performance, yielding a practical solution to real-time applications.

A Study on the Side Collision Accident Reconstruction Using 3-Dimensional Crash Analysis (3차원 충돌해석 정보를 이용한 측면 충돌 사고 재구성)

  • Jang, In-Sik;Kim, Il-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2008
  • The side collision reconstruction algorithm is developed using three dimensional car crash analysis. Medium size passenger car is modeled for finite element analysis. Total 24 side collision configurations, four different speed and six different angle, are set up for making side collision database. Deformation index and degree index are built up for each collision case. Deformation index is a kind of deformation estimate averaging displacement of side door of crashed car from finite element analysis result. Angle index is constructed measuring deformed angle of crashing car. There are two kinds of angle index, one is measured at driver's side and the other is measured at passenger's side. Also a collision analysis information in side of cars is used for giving a basis for scientific and practical reason in a reconstruction of the car accident. The analysis program, LS-DYNA3D is utilized for finite element analysis program for a collision analysis. Those database are used for side collision reconstruction. Side collision reconstruction algorithm is developed, and applied to find the collision conditions before the accident occurs. Three example collision cases are tried to check the effectiveness of the algorithm. Deformation index and angle index is extracted for the case from the analysis result. Deformation index is compared to the established database, and estimated collision speed and angle are introduced by interpolation function. Angle index is used to select a specific collision condition from the several available conditions. The collision condition found by reconstruction algorithm shows good match with original condition within 10% error for speed and angle. As a result, the calculation from the reconstruction of the situation is reproducing the situation well. The performance in this study can be used in many ways for practical field using deformation index and degree index. Other different collision situations may be set up for extending the scope of this study in the future.

Projective Reconstruction Method for 3D modeling from Un-calibrated Image Sequence (비교정 영상 시퀀스로부터 3차원 모델링을 위한 프로젝티브 재구성 방법)

  • Hong Hyun-Ki;Jung Yoon-Yong;Hwang Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.113-120
    • /
    • 2005
  • 3D reconstruction of a scene structure from un-calibrated image sequences has been long one of the central problems in computer vision. For 3D reconstruction in Euclidean space, projective reconstruction, which is classified into the merging method and the factorization, is needed as a preceding step. By calculating all camera projection matrices and structures at the same time, the factorization method suffers less from dia and error accumulation than the merging. However, the factorization is hard to analyze precisely long sequences because it is based on the assumption that all correspondences must remain in all views from the first frame to the last. This paper presents a new projective reconstruction method for recovery of 3D structure over long sequences. We break a full sequence into sub-sequences based on a quantitative measure considering the number of matching points between frames, the homography error, and the distribution of matching points on the frame. All of the projective reconstructions of sub-sequences are registered into the same coordinate frame for a complete description of the scene. no experimental results showed that the proposed method can recover more precise 3D structure than the merging method.

Fast Iterative Solving Method of Fuzzy Relational Equation and its Application to Image Compression/Reconstruction

  • Nobuhara, Hajime;Takama, Yasufumi;Hirota, Kaoru
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • A fast iterative solving method of fuzzy relational equation is proposed. It is derived by eliminating a redundant comparison process in the conventional iterative solving method (Pedrycz, 1983). The proposed method is applied to image reconstruction, and confirmed that the computation time is decreased to 1 / 40 with the compression rate of 0.0625. Furthermore, in order to make any initial solution converge on a reconstructed image with a good quality, a new cost function is proposed. Under the condition that the compression rate is 0.0625, it is confirmed that the root mean square error of the proposed method decreases to 27.34% and 86.27% compared with those of the conventional iterative method and a non iterative image reconstruction method, respectively.

Range image reconstruction based on multiresolution surface parameter estimation (다해상도 면 파라미터 추정을 이용한 거리영상 복원)

  • 장인수;박래홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.58-66
    • /
    • 1997
  • This paper proposes a multiresolution surface parameter estimation method for range images. Based on robust estimation of surface parameters, it approximates a patch to a planar surface in the locally adaptive window. Selection of resolution is made pixelwise by comparing a locally computed homogeneity measure with th eglobal threshold determined by te distribution of the approximation error. The proposed multiresolution surface parameter estimation method is applied to range image reconstruction. Computer simulation results with noisy rnag eimages contaminated by additive gaussian noise and impulse noise show that the proposed multiresolution reconstruction method well preserves step and roof edges compared with the conventional methods. Also the segmentation method based on the estimated surface parameters is shown to be robust to noise.

  • PDF

Computer-aided Maxillofacial ablation and reconstruction Surgery (임상가를 위한 특집 1 - 컴퓨터 기반 악골 종양의 절제 및 재건술)

  • Moon, Seong-Yong;Lim, Sung-Hoon
    • The Journal of the Korean dental association
    • /
    • v.52 no.10
    • /
    • pp.596-601
    • /
    • 2014
  • Computer-aided surgery is popular and useful in the field of oral and maxillofacial surgery, because of the possibility of simulation with a high accuracy. In all aspects of surgery, proper planning facilitates more predictable operative results, however before the use of virtual planning, much of this relied on 2-dimensional (2-D) imaging for treatment planning on a 3-dimensional (3-D) object and surgical trial and error. With real-time instrument positioning and clear anatomic identification, a computer-assisted navigation system (CANS) is exceptionally helpful in maxillofacial surgery. These techniques enable performing precise bony ablation and reconstruction, and also decrease surgical time and donor site defect.

The estimation of first order derivative phase error using iterative algorithm in SAR imaging system (SAR(Synthetic Aperture Radar)Imaging 시스템에서 제안 알고리즘의 반복수행을 통한 위상오차의 기울기 추정기법 연구)

  • 김형주;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.505-508
    • /
    • 2000
  • The success of target reconstruction in SAR(Synthetic Aperture Radar) imaging system is greatly dependent on the coherent detection. Primary causes of incoherent detection are uncompensated target or sensor motion, random turbulence in propagation media, wrong path in radar platform, and etc. And these appear as multiplicative phase error to the echoed signal, which consequently, causes fatal degradations such as fading or dislocation of target image. In this paper, we present iterative phase error estimation scheme which uses echoed data in all temporal frequencies. We started with analyzing wave equation for one point target and extend to overall echoed data from the target scene - The two wave equations governing the SAR signal at two temporal frequencies of the radar signal are combined to derive a method to reconstruct the complex phase error function. Eventually, this operation attains phase error correction algorithm from the total received SAR signal. We verify the success of the proposed algorithm by applying it to the simulated spotlight-mode SAR data.

  • PDF

A Study on the Quantification Error due to the Reconstruction Filters in Single Photon Emission Computed Tomography(SPECT) (단일광자방출 전산화단층촬영상에서 재구성 필터에 의한 정량화 오차에 관한 연구)

  • 곽철은;정준기
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 1991
  • As the computerized methods and equipments In nuclear medicine imaging increases, quantitative information is needed on the single photon emission computed tomographic Images as well as on the conventional nuclear medicine images. In this paper, the authors investigated the effect of several clinician - friendly reconstrution filters on the resultant transverse slices of backprojected Profiles of radioisotope distribution from the Quantitative point of view, and reduced the filter parameters such as cutoff frequency and order of filter which are neces mary to minimize the quantification error using computer-generated phantoms.

  • PDF

Design of Robust Adaptive Fuzzy Controller for Uncertain Nonlinear System (불확실한 비선형 계통에 대한 강인한 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun;Seo, Ho-Joon;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.921-923
    • /
    • 1999
  • In adaptive fuzzy control, fuzzy systems are used to approximate the unknown plant nonlinearities. However, because of the approximating error introduced into the feedback loop, it is difficult to guarantee the stability of the adaptive control algorithm. This paper presents a robust control algorithm against the reconstruction error and uniform boundedness of the all signals is estabilished in the Lyapunov sense.

  • PDF

Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

  • Qiao, Baijie;Mao, Zhu;Sun, Hao;Chen, Songmao;Chen, Xuefeng
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.369-384
    • /
    • 2020
  • A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.