• Title/Summary/Keyword: Reconfigurable system

Search Result 237, Processing Time 0.031 seconds

A Survey for the design and development of Reconfigurable SDR Mobile Station (재구성 가능한 SDR 이동국 설계 및 구축 방안 연구)

  • Jeong Sang-Kook;Kim Han-Kyoung
    • Journal of Internet Computing and Services
    • /
    • v.7 no.2
    • /
    • pp.121-136
    • /
    • 2006
  • Software architecture and protocols to be maintained between components for the reconfigurable SDR system is analyzed and suggest system design idea for the implementation of software. To do this, related surveys are reviews and set up the system model with the structure of embedded system. SDR system architecture is suggested with five layered structure, consisted with hardware, operating system, middle-ware, service objects and application layer. SDR system is designed to be work on the basis of Linux operating system, and aimed to be scalable and reconfigurable. It is introduced the design result of software protocol and state transition diagram for the implementations of software download function which is the most important feature in SDR.

  • PDF

Cost-Driven Optimization of Defect-Avoidant Logic Mapping Strategies for Nanowire Reconfigurable Crossbar Architecture (Nanowire Reconfigurable Crossbar 구조를 위한 결함 회피형 로직 재할당 방식의 분석과 총 비용에 따른 최적화 방안)

  • Lee, Jong-Seok;Choi, Min-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.257-271
    • /
    • 2010
  • As the end of photolithographic integration era is approaching fast, numerous nanoscale devices and systems based on novel nanoscale materials and assembly techniques are recently emerging. Notably, various reconfigurable architectures with considerable promise have been proposed based on nanowire crossbar structure as the primitive building block. Unfortunately, high-density sys-tems consisting of nanometer-scale elements are likely to have numerous physical imperfections and variations. Therefore, defect-tolerance is considered as one of the most exigent challenges in nanowire crossbar systems. In this work, three different defect-avoidant logic mapping algorithms to circumvent defective crosspoints in nanowire reconfigurable crossbar systems are evaluated in terms of various performance metrics. Then, a novel method to find the most cost-effective repair solution is demonstrated by considering all major repair parameters and quantitatively estimating the performance and cost-effectiveness of each algorithm. Extensive parametric simulation results are reported to compare overall repair costs of the repair algorithms under consideration and to validate the cost-driven repair optimization technique.

Study on Springback Control in Reconfigurable Die Forming (가변금형 성형에서 탄성회복 제어 연구)

  • Ha, S.M.;Park, J.W.;Kim, T.W.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.393-400
    • /
    • 2008
  • Springback is one of the most difficult phenomena to analyze and control in sheet forming. Most of traditional springback control methods rely on experiences of skilled workers in industrial fields. This study focuses on prediction and generation of optimum reconfigurable die surfaces to control shape errors originated by springback. For this purpose, a deformation transfer function(DTF) was combined with finite element analysis of the springback in the 2D sheet forming model of elastic-perfectly plastic materials under the condition without blank holder. The results showed shape errors within 1% of the objective shape, which were comparable with analytically predicted errors. In addition to this theoretical analysis, DTF method was also applied to 2D and 3D sheet forming experiments. The experimental results showed ${\pm}0.5$ mm and ${\pm}1.0$ mm shape error distribution respectively, demonstrating that reconfigurable die surfaces were predicted well by the DTF method. Irrespective of material properties and sheet thickness, the DTF method was applicable not only to FEM simulation but also to 2D and 3D elasto-reconfigurable die forming. Consequently, this study shows that springback can be controlled effectively in the elasto-RDF system by using the DTF method.

Development of Web-based Simulator for Supply Chain Network with Reconfigurable Manufacturing System and Multi-layered Distribution Center (재구성가능 제조시스템과 다계층 구조를 가지는 분배센터로 구성된 공급사슬망을 위한 웹기반 시뮬레이터 개발)

  • Seo, Min-Seok;Lim, Dae-Eun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.279-288
    • /
    • 2011
  • The past researches focused on the supply chain network that consists of factories, distribution centers and retailers for single product type. This research is required because the factory for single product type is advanced to reconfigurable type in order to produce various products, according to customers' various purchase forms and time. This research is also required because in the past researches, the material flows from factories to distribution centers and from distribution centers to retailers, but recently, there are material flows between distribution centers. The supply chain network in this research consists of reconfigurable manufacturing system, multi-layered distribution centers, and retailers. A simulator is developed to analyze the material flow on the supply chain network. The developed simulator is web-based designed by using Java Server Page and MS-SQL, so as to maximize the convenience for users.

Reconfigurable Flight Control Law based on Model Following Scheme and Parameter Estimation (매개변수 추정 및 모델추종 적응제어기법을 이용한재형상 비행제어시스템 연구)

  • Mun, Gwan-Yeong;Kim, Yu-Dan;Lee, Han-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.67-73
    • /
    • 2006
  • In this paper, a reconfigurable model following flight control method is proposed based on direct adaptive scheme using parameter estimation. Adaptive control scheme updates the control gains to make the system output follow the reference output even when fault occurs. By adopting the frequency domain parameter estimation method, system changes by the fault can be estimated. Recursive Fourier transformation is used for system identification. Using recursive Fourier transform, the proposed adaptive control algorithm guarantees the system stability and improves the system characteristics. To evaluate the performance of proposed control method, numerical simulations are performed.

Reconfigurable Flight Control Design for the Complex Damaged Blended Wing Body Aircraft

  • Ahn, Jongmin;Kim, Kijoon;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.290-299
    • /
    • 2017
  • Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.

Filtering and Intrusion Detection Approach for Secured Reconfigurable Mobile Systems

  • Idriss, Rim;Loukil, Adlen;Khalgui, Mohamed;Li, Zhiwu;Al-Ahmari, Abdulrahman
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2051-2066
    • /
    • 2017
  • This paper deals with reconfigurable secured mobile systems where the reconfigurability has the potential of providing a required adaptability to change the system requirements. The reconfiguration scenario is presented as a run-time automatic operation which allows security mechanisms and the addition-removal-update of software tasks. In particular, there is a definite requirement for filtering and intrusion detection mechanisms that will use fewer resources and also that will improve the security on the secured mobile devices. Filtering methods are used to control incoming traffic and messages, whereas, detection methods are used to detect malware events. Nevertheless, when different reconfiguration scenarios are applied at run-time, new security threats will be emerged against those systems which need to support multiple security objectives: Confidentiality, integrity and availability. We propose in this paper a new approach that efficiently detects threats after reconfigurable scenarios and which is based on filtering and intrusion detection methods. The paper's contribution is applied to Android where the evaluation results demonstrate the effectiveness of the proposed middleware in order to detect the malicious events on reconfigurable secured mobile systems and the feasibility of running and executing such a system with the proposed solutions.