한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.310-315
/
2001
We are focusing on an approach which handle a general Web as a resource in order to support self-directed learning for a student. Then, we are developing a Web based learning environment "Web-Retracer"for utilizing Web as teaching materials by a user′s Annotation. Although the learner can share the Web resource that the others utilized in this environment, Web resources unsuitable for a student′s needs becomes hindrance about her/his self-directed learning. In this paper, we propose a recommending method of the resource united with a student′s needs on the basis of a student′s learning and Web browsing history. This method analyzed the feature peculiar to a resource, and extracts the resource with which the needs of the feature and a student agreed.
전자상거래의 활성화로 인하여 인터넷상에 많은 쇼핑몰이 존재한다. 상품 추천 시스템은 고객이 원하는 정보를 얻기 위해 소요되는 시간과 노력을 절약하기 위해 필요성이 강조되고 있다. 본 논문에서는 고객의 접근 로그 데이터를 분석하기 위해 데이터 마이닝 기법 중 분류 기법을 이용하였다. 접근 로그 데이터는 고객이 쇼핑몰에 접근하였거나 접근하여 상품을 구매한 내역 등에 관한 정보를 포함하고 있다. 제안한 시스템은 두 단계로 구성한다. 제 1 단계는 데이터 필터링 모듈과 고객이 접근한 웹 페이지들 사이의 관련성을 추출하는 모듈로 구성하고, 제 2단계는 개인화 모듈과 규칙 생성 모듈로 이루어져 있다. 결과적으로 제안한 시스템은 고객의 패턴을 파악하는데 있어서 고객에게 추천하는 웹페이지들을 등급화하여 제시함으로써 고객에게 상품 추천을 효율적으로 할 수 있다.
본 연구에서는 사용자의 감성 정보를 이용한 협업 필터링 기반 장소 추천 시스템을 개발하였다. 기존의 장소 추천 시스템은 장소에 대한 사용자들의 평점이나 방문패턴, 사용자들의 위치를 통해 장소를 추천하였다. 이러한 시스템들은 객관적이지 못 한 정보를 갖고 있거나 사용자의 상태를 고려하지 않아 만족도가 높지 않다. 사용자의 감성 정보를 이용하면 비슷한 감성을 느낀 사용자들이 방문하였던 선호도 높은 장소를 객관적으로 추천하여 장소에 대한 만족도를 높일 수 있다. 본 연구에서는 사용자가 직접 모바일 애플리케이션을 이용하여 현재 위치와 생체신호를 이용하여 인식한 감성 정보를 등록하고, 등록된 감성 정보를 이용하여 비슷한 감성을 가진 사용자들의 유사도를 측정하고 장소에 대한 선호도를 예측하여 사용자에게 감성 장소를 추천한다.
e쇼핑몰 경영자들은 고객들의 다양한 제품 구매 욕구를 충족시키기 위한 효율적 시스템에 많은 관심을 가지고 있다. 인터넷 쇼핑몰 운영에 있어 고객들의 개인적 구매 특성 및 취향을 파악하여 고객들을 효과적으로 관리하는데 많은 어려움이 있다. 상품 추천의 과정이 기획된 소수의 특정 상품을 고객의 유형 및 특성들의 고려 없이 공급자 중심으로 이루어져 고객관리의 문제점으로 지적되고 있다. 본 연구에서는 고객위주의 추천을 위해 규칙기반추론(Rule-Based Reasoning, RBR)과 사례기반추론(Case-Based Reasoning, CBR)을 하여 고객의 취향 및 구매 특성에 따른 추천방법을 제시한다. 기존의 제품 판매정보와 고객정보를 이용해 생성한 규칙베이스와 사례베이스의 고객특성과 입력된 고객특성의 유사도를 평가해서 고객의 취향에 따라 추천하도록 한다. 생성된 규칙과 사례기반의 추론으로 기존의 정보를 효과적으로 사용하고 또한 고객 및 시장 상황의 변화를 인식하고 지속적인 학습을 수행하여 지능적 추천이 이루어진다.
It is a major concern of e-shopping mall managers to satisfy a variety of customer's desire by recommending a proper commodity to the expected purchaser. Customer information like customer's fondness and idiosyncrasy in shopping has not been used effectively for the customers or the suppliers. Conventionally, e-shopping mall managers have recommended specific items of commodities to their customers without considering thoroughly in a customer point of view. This study introduces the ways of a choosing and recommending of commodities for customer themselves or others. A similarity measure between one member's idiosyncrasy and the other members' is developed based on the rule base and the case base. The case base is improved by recognizing and learning the changes of customer's desire and shopping trend.
Providing explanations about recommending actions is one of the most important capabilities of expert systems. In fact, there exist many approaches incorporating this explanation facility into the system. Here we present briefly a new approach to generating these explanations and further attempt to investigate the impact of system explanations on user behaviors toward system-generated recommendations. For this experiment we designed a stock investment decision supporting system which, given a set of market situations, suggests an investment recommendation with explanations about the recommending action. Twenty-nine bank employees evaluated the output of the system in a laboratory setting. The results indicate that explanation facilities can make systems-generated advice more confident to users but cannot increase users'acceptance for the system conclusion.
규칙 탐사는 주어진 데이터베이스로부터 빈번하게 발생하는 패턴들을 발견하는 연산이다. 규칙 탐사 연산을 이용하여 주식 데이터베이스로부터 유용한 규칙들을 발견하고 이를 토대로 주식 투자자들에게 주식의 매매를 적절한 시점에 추천할 수 있다. 본 논문에서는 이러한 주식 투자 시스템에서 질의를 효율적으로 처리하기 위한 저장 구조에 관하여 논의한다. 먼저, 주식 투자 추천을 지원하기 위한 다섯 가지 저장 구조들을 제안하고, 각 구조들의 특징과 장단점을 비교한다. 또한, 실제 주가 데이터를 이용한 실험을 통하여 제안된 저장 구조들의 성능을 검증한다. 실험 결과에 의하면, 히스토그램을 이용한 저장 구조의 경우, 기존의 기법에 비하여 질의 처리 성능이 약 170배 개선되는 것으로 나타났다.
User-based collaborative filtering is a method of recommending an item to a user based on the preference of the neighbor users who have similar purchasing history to the target user. User-based collaborative filtering is based on the fact that users are strongly influenced by the opinions of other users with similar interests. Item-based collaborative filtering is a method of recommending an item by comparing the similarity of the user's previously preferred items. In this study, we create a recommendation model using user-based collaborative filtering and item-based collaborative filtering with consumer's consumption data. Collaborative filtering is performed by using RFM (recency, frequency, and monetary) technique with purchasing data to recommend items with high purchase potential. We compared the performance of the recommendation system with the purchase amount and the performance when applying the RFM method. The performance of recommendation system using RFM technique is better.
본 논문은 사용자와의 대화를 통해 적합한 맛 집 정보를 제공하고, 사용자들에게 감성적으로 다가가는 프로그램인 감성형 모바일 정보 추천 에이전트에 관하여 기술하였다. 제안하는 에이전트는 단순히 음식점과 전화번호만을 소개하는 기존의 방식을 벗어나, 각각의 시간대에 적절한 질문 등을 함으로써 사용자와의 대화를 통한 흥미를 유발함과 동시에 현재의 상황에서 개개인에게 적합한 맛 집을 추천 해주는 프로그램이다. 사용자의 감성을 파악하기 위한 핵심 기술로, 불쾌지수와 감기지수를 측정하고 사용자의 바이오리듬을 계산하여 개개인에 적합한 맛 집을 추천한다. 뿐만 아니라 모바일 에이전트에 적합한 디자인을 제안하므로 에이전트를 더욱 효과적으로 설계하였다. 본 연구에서는 추천 서비스를 위한 모바일 환경과 데이타 관리를 위한 웹 환경을 사용한다. 서비스를 위한 서버환경은 Apache, PHP4, Mysql등을 사용하였으며, 모바일 페이지는 핸드폰의 접근을 위한 m-HTML로 구현되었다. 이때 모바일 서비스는 Mozilla-1.22, KUN-1.2.3 브라우저 버전에 최적화 하였다.
학술지 투고논문 심사에 적합한 심사위원을 찾아내고 선정하는 업무는 간단하지 않다. 이에 해외의 주요 학술지 온라인 투고관리시스템에서는 심사위원을 추천하는 기능을 개발하여 운영 중이다. 투고논문의 참고문헌에 있는 저자를 심사위원 후보로 추천하는 것부터 인용색인을 탐색해 광범위하게 제안하는 것까지 이들이 제공하는 기능은 다양하다. 이 연구는 온라인 투고관리시스템에서 심사위원 후보 추천과 관련하여 어떤 기능을 제공하고 있는지를 조사하였다. 조사결과 해외 주요 온라인 투고관리시스템인 ScholarOne Manuscripts, Editorial Manager 등은 상용 인용색인과 심사이력 플랫폼을 연동해 심사위원 후보를 추천하고 있었다. 반면에 국내 주요 투고관리시스템인 JAMS에는 심사위원 후보 추천 등과 같은 심화 기능이 없었다. 향후 국내에서도 투고논문의 적합 심사위원을 추천하고 심사이력을 활용하는 기능을 개발하는 등 투고관리시스템 기능 향상에 더욱 힘써야 할 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.