• Title/Summary/Keyword: Recommending Service

Search Result 91, Processing Time 0.027 seconds

A Study of Recommending Service Using Mining Sequential Pattern based on Weight (가중치 기반의 순차패턴 탐사를 이용한 추천서비스에 관한 연구)

  • Cho, Young-Sung;Moon, Song-Chul;Ahn, Yeon S.
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.711-719
    • /
    • 2014
  • Along with the advent of ubiquitous computing environment, it is becoming a part of our common life style that the demands for enjoying the wireless internet using intelligent portable device such as smart phone and iPad, are increasing anytime or anyplace without any restriction of time and place. The recommending service becomes a very important technology which can find exact information to present users, then is easy for customers to reduce their searching effort to find out the items with high purchasability in e-commerce. Traditional mining association rule ignores the difference among the transactions. In order to do that, it is considered the importance of type of merchandise or service and then, we suggest a new recommending service using mining sequential pattern based on weight to reflect frequently changing trends of purchase pattern as time goes by and as often as customers need different merchandises on e-commerce being extremely diverse. To verify improved better performance of proposing system than the previous systems, we carry out the experiments in the same dataset collected in a cosmetic internet shopping mall.

Photo Management Cloud Service Using Deep Learning

  • Kim, Sung-Dong;Kim, Namyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.183-191
    • /
    • 2020
  • Today, taking photos using smartphones has become an essential element of modern people. According to these social changes, modern people need a larger storage capacity, and the number of unnecessary photos has increased. To support the storage, cloud-based photo storage services from various platforms have appeared, and many people are using the services. As the number of photos increases, it is difficult for users to find the photos they want, and it takes a lot of time to organize. In this paper, we propose a cloud-based photo management service that facilitates photo management by classifying photos and recommending unnecessary photos using deep learning. The service provides the function of tagging photos by identifying what the subject is, the function of checking for wrongly taken photos, and the function of recommending similar photos. By using the proposed service, users can easily manage photos and use storage capacity efficiently.

Similarity-based Service Recommendation for Service-Mashup Developers (서비스 매쉬업 개발자를 위한 유사도 기반 서비스 추천 방법)

  • Kim, HyunSeung;Ko, InYoung
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.908-917
    • /
    • 2017
  • As web service technologies are widely used, there have been many efforts to develop approaches for recommending appropriate web services to users in complex and dynamic service environments. In addition, for the effective development of service mashups, service recommender systems that are specialized for service composition have been developed. However, existing service recommender systems for service mashups are not effective at recommending services in a personalized manner that reflect developers' preferences. To deal with this issue, we propose an approach that recommends services based on the similarities between mashup developers who have developed similar service mashups. The proposed approach is then evaluated by using the mashup data retrieved from ProgrammableWeb. The evaluation results clearly show that the proposed approach is an effective way of improving service recommendations compared to the traditional user-based collaborative filtering algorithm.

An Implementation of an Agent for Recommending Sensitive Information on Mobile Environment (감성형 모바일 정보 추천 에이전트 구현)

  • Park, Eun-Young;Park, Young-Ho
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • The paper proposes information system for providing proper well known delicious restaurants as interactions with users. The system calls 'Moloke', which is an agent for recommending sensitive information on mobile environment The proposing agent differs from existing ones that guide the telephone number and the name of the restaurant. The differences are as following goals. First, the agent gets existing from users as interactive communications on mobile devices through the proper requests on each time zone such as morning, afternoon, and evening. Second, the agent also can recommend a specific restaurant for current personal states such as parties, special community meetings, bio-rhythms and so on. Among them, specially the bio-rhythm is used for recommending proper restaurants to each user. In addition to through proposal suitable design for the mobile agent design more effectively. The research used mobile environment for recommendation service and web environment for data management. Server environment for service used Apache, PHP4, Mysql and mobile page was implemented m-html for approach. Mobile Service was optimized Mozilla-1.22, KUN-1.2.3 Browser

  • PDF

The Relationships among Perceived Value, Use-Diffusion, Loyalty of Mobile Instant Messaging Service (모바일 메신저 서비스의 지각된 가치, 사용-확산 그리고 충성도 간의 관계에 대한 연구)

  • Jo, Dong-Hyuk;Park, Jong-Woo;Chun, Hyun-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.193-212
    • /
    • 2011
  • Mobile instant messaging service is surfacing to an important keyword in the mobile market together with popularization of Smart phones. Mobile instant messaging service in Korea has become popular to the degree of 87.9% usages from total Smartphone holders, and it is expected that using populations will be more enlarged afterwards if considering a fact that its populations of Smartphone is continuously being increased after exceeding 10 million persons (Trend Monitor, June 2011). In the instant messaging market where competitions have been deepened day by day, raising customer's royalties will be the key for company's business survivals and goals of corporate marketing strategies. It could be said that understanding on which factors affect to customer retentions and royalties is very important. Specially, as changing status is being progressed very quickly in case of innovative mobile services like the instant messaging service, research necessities on how many do consumers use the services after accepting them, how much do consumers use them variously, and whether does it connect to long-term relations have been increased, but studies on such matters are in insufficient situations actually. Therefore, this study examined on which effects were affected to use-diffusion and loyalty factors from perceived customer vales' factors having been occurred after accepting the mobile instant messaging service, namely 'functional value', 'monetary value', 'emotional value', and 'social value'. Also, the study looked into what kind of roles do the service usage and using variety play to service's continued using intents as a loyalty index, recommending intents to others, and brand switching intents. And then the study laid the main purpose in trying to provide implications for enhancing customer securities and royalties on the mobile instant messaging service through research's results. The research hypotheses are as follows; H1: Perceived values will affect influences to royalties. H2: Use-Diffusion will affect influences to loyalty. H3: Perceived value will affect influences to loyalty. H4: The use-diffusion will play intermediating roles between perceived values and loyalty. Total 276 cases among collected 284 ones were used for the statistical analysis by SPSS ver. 15 package. Reliability, Factor analysis, regression were done. As the result of research, 'monetary value' and 'emotional value' affected to 'usage' among perceived value factors, and 'emotional value' was appeared as affecting the largest influence. Besides, the usage affected to constant-using intents and recommending intents to others, and using varieties were displayed as affecting to recommending intents to others. On the other hand, 'Using' and 'Using diversity' were appeared as not affecting to 'brand switching intentions'. Meanwhile, as the result of recognizing about effects of perceived values on the loyalty, it was appeared such like 'continued using intents' affected to'functional value', 'monetary value', and 'social value' first, and also 'monetary value', 'emotional value', and 'social value' affected to 'recommending intents to others'. On the other hand, it was shown such like only 'social value' affected influences to 'brand switching intents', and thus contrary results with the factor 'constant-using intents' were displayed. So, it seems that there are many applications to service provides who are worrying about marketing strategies for making consumer retains (constant-using) and new consumer's inductions (brand-switching intents). Finally, as a result of looking into intermediating roles of the use-diffusion factor in relations between conceived values and royalties at hypothesis 4, 'using' and 'using diversity' were displayed as affecting significant influences all together. Regarding to research result's implications, for expanding and promoting continued uses of the mobile instant messaging service by service providers: First, encouraging recognitions on the perceived value connected to users' service usage are necessary. Second, setting up user's use-diffusion strategies are required so as to enhance the loyalty after understanding a fact that use-diffusion patterns affecting to the service's loyalty are different. Finally, methods of raising customer loyalties and making constant relationships have to be grouped by analyzing on what are the customer value's factors that can satisfy users in competitive alterations.

LSTM-based IPTV Content Recommendation using Watching Time Information (시청 시간대 정보를 활용한 LSTM 기반 IPTV 콘텐츠 추천)

  • Pyo, Shinjee;Jeong, Jin-Hwan;Song, Injun
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1013-1023
    • /
    • 2019
  • In content consumption environment with various live TV channels, VoD contents and web contents, recommendation service is now a necessity, not an option. Currently, various kinds of recommendation services are provided in the OTT service or the IPTV service, such as recommending popular contents or recommending related contents which similar to the content watched by the user. However, in the case of a content viewing environment through TV or IPTV which shares one TV and a TV set-top box, it is difficult to recommend proper content to a specific user because one or more usage histories are accumulated in one subscription information. To solve this problem, this paper interprets the concept of family as {user, time}, extends the existing recommendation relationship defined as {user, content} to {user, time, content} and proposes a method based on deep learning algorithm. Through the proposed method, we evaluate the recommendation performance qualitatively and quantitatively, and verify that our proposed model is improved in recommendation accuracy compared with the conventional method.

Implementation of a Chatbot Application for Restaurant recommendation using Statistical Word Comparison Method (통계적 단어 대조를 이용한 음식점 추천 챗봇 애플리케이션 구현)

  • Min, Dong-Hee;Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 2019
  • A chatbot is an important area of mobile service, which understands informal data of a user as a conversational form and provides a customized service information for user. However, there is still a lack of a service way to fully understand the user's natural language typed query dialogue. Therefore, in this paper, we extract meaningful words, such a region, a food category, and a restaurant name from user's dialogue sentences for recommending a restaurant. and by comparing the extracted words against the contents of the knowledge database that is built from the hashtag for recommending a restaurant in SNS, and provides user target information having statistically much the word-similarity. In order to evaluate the performance of the restaurant recommendation chatbot system implemented in this paper, we measured the accessibility of various user query information by constructing a web-based mobile environment. As a results by comparing a previous similar system, our chabot is reduced by 37.2% and 73.3% with respect to the touch-count and the cutaway-count respectively.

A Recommender System for Device Sharing Based on Context-Aware and Personalization

  • Park, Jong-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.174-190
    • /
    • 2010
  • In ubiquitous computing, invisible devices and software are connected to one another to provide convenient services to users [1][2]. Users hope to obtain a personalized service which is composed of customized devices among sharable devices in a ubiquitous smart space (which is called USS in this paper). However, the situations of each user are different and user preferences also are various. Although users request the same service in the same USS, the most suitable devices for composing the service are different for each user. For these user requirements, this paper proposes a device recommender system which infers and recommends customized devices for composing a user required service. The objective of this paper is the development of the systems for recommending devices through context-aware inference in peer-to-peer environments. For this goal, this paper considers the context and user preference. Also I implement a prototype system and test performance on the real ubiquitous mobile object (UMO).

Development of Sunlight Basking Scheduling Service (햇빛쐬기 일정관리 서비스 개발)

  • Ko, Jang Hyok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.76-80
    • /
    • 2023
  • This study is about a service that allows people to naturally learn to bask in the sun, which is a habit to relieve depression. Modern people do not have enough time to bask in the sun due to their busy lives, and as a result, depression and fatigue are increasing day by day. Therefore, in order to relieve depression, there is a need for the development of technology to manage the schedule of sunlight basking so that users can experience sunlight more naturally. The sunlight service developed through this study can help you easily plan your sunlight schedule by recommending good dates, times, and locations for sunbathing. In addition, users can receive coins as much as they bask in the sun, and they can be motivated by the act of basking in the sun by raising their character with those coins.

  • PDF

MBTI-based Recommendation for Resource Collaboration System in IoT Environment

  • Park, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • In IoT(Internet of Things) environment, users want to receive customized service by users' personal device such as smart watch and pendant. To fulfill this requirement, the mobile device should support a lot of functions. However, the miniaturization of mobile devices is another requirement and has limitation such as tiny display. limited I/O, and less powerful processors. To solve this limitation problem and provide customized service to users, this paper proposes a collaboration system for sharing various computing resources. The paper also proposes the method for reasoning and recommending suitable resources to compose the user-requested service in small device with limited power on expected time. For this goal, our system adopts MBTI(Myers-Briggs Type Indicator) to analyzes user's behavior pattern and recommends personalized resources based on the result of the analyzation. The evaluation in this paper shows that our approach not only reduces recommendation time but also increases user satisfaction with the result of recommendation.