모바일 게임 이용자들은 모바일 게임을 선택할 때, 친구들이나 SNS의 의견을 참고하는 것을 선호하는 경향이 있다. 이러한 이유는 기존의 모바일 게임 추천 시스템에서 제공하는 추천 정보에 만족하지 않기 때문이다. 본 연구에서는 계층적 분석 방법(Analytic Hierarchy Process, AHP)을 적용하여 사용자들의 선호도를 직접적으로 반영할 수 있는 모바일 게임 추천 시스템을 구현하였다. 본 시스템에서 AHP 계층도는 각 계층별로 최종 목표(Level 1), 평가 기준(Level 2), 대안(Level 3)으로 구성된다. 본 시스템은 입력 모듈, AHP 처리 모듈, 추천 모듈, 데이터베이스로 구성된다. 본 시스템의 성능을 확인하기 위하여 기존의 추천 시스템들과 만족도를 비교한 결과, 본 시스템이 다른 추천 시스템보다 만족도가 높다는 것을 확인할 수 있었다.
최근 사회망 기반의 검색 서비스들을 중심으로 다양한 방법들이 제시되고 있다. 기존의 추천시스템들은 특정 영역의 전문가를 검색할 수 있지만 검색하고자 하는 전문가에 대한 프로파일과 전문가를 평가하는 항목이 한 시스템에 있어야만 한다. 본 논문에서는 지식베이스와 XMDR을 이용하여 서로 다른 시스템에 존재하는 전문가 프로파일과 전문가를 평가하는 항목 수집을 자동화할 수 있다. 또한 다양한 리소스들을 이용하여 사회망을 동적으로 구축하여 여러 전문가를 추천할 수 있는 시스템을 구성하고자한다. 그러나 다양한 리소스들은 지역적으로 분산되어 있고 이종의 데이터 소스들로 구성되어있기 때문에 사용자 의사결정을 위한 정보를 얻는 것은 어렵다. 이러한 문제를 효율적으로 해결하기 위해서 사용자에게 단일 인터페이스를 제공하고 이종시스템들 간에 구축된 리소스들에는 각각 독립성과 투명성을 제공할 필요성이 있다. 따라서 본 논문에서는 분산되어있는 전문가 프로파일 추출을 위해 XMDR과 지식베이스를 이용하고 이러한 지식베이스를 사회망과 연계한 전문가 추천 시스템을 설계한다.
음악의 생산과 수요 증가와 함께 사용자의 장치에 저장되어 있는 음악을 관리하기 위한 관심 또한 증가하고 있다. 일반적으로 사용자는 음악을 효과적으로 관리하기 위해 재생 목록을 작성하고 이를 선택하는 방법을 사용하고 있다. 하지만 현재 사용되는 재생 목록의 작성 방법은 음악을 사용자가 직접 선택해야 하는 한계를 안고 있다. 따라서 재생 목록을 자동으로 작성하여 사용자에게 제공해주는 방법이 필요하다. 본 논문에서는 사용자의 음악사용의 상황과 취향을 고려하여 자동으로 재생 목록을 생성해주는 시스템을 제안한다. 이 시스템은 음악적 무드 (Musical mood) 분류 시스템과 음악 추천 시스템, 두 가지 별개의 시스템으로 구성되어 있다. 사용자는 음악을 추천 받기 위해 단지 하나의 음악을 선택한다. 그러면 시스템은 자동으로 재생 목록을 생성하기 위해 선택된 음악과 유사한 무드의 음악을 재생 목록에 추가한다. 사용자는 재생 목록에 추가된 음악 중 자신의 취향에 맞지 않는 음악을 제거하여 취향에 적합한 음악을 반복적으로 추천 받을 수 있다. 본 논문에서 제안하는 시스템의 실험과 평가를 위해 실제 음악을 수집하였으며 시스템을 통해 생성된 재생 목록을 분석하여 사용자의 취향이 보다 정확히 반영된 것을 확인하였다.
협동적 여과(CF) 시스템은 구현의 용이성과 뛰어난 성능으로 널리 활용되고 있다. 그러나 이 시스템은 데이터 희소성 신상품 추천 불가, 추천 근거에 대한 설명 부족 등의 문제점을 포함하고 있어 이를 해결하기 위한 많은 연구가 진행되었다. 데이터 희소성 문제는 데이터의 누적에 따라 해결될 수 있지만, 협동적 여과 기법의 특성상 새로이 출시되는 품목에 대한 추천이 불가능하다. 이를 해결하기 위해 내용 기반(CB) 기법을 같이 사용하는 연구들이 제안되었다. 또한 협동적 여과 시스템은 추천 과정에 있어 추천 근거에 대한 설명을 제공하지 않는다. 본 연구에서는 추천에 대한 설명 기능을 포함하고 있는 선호 단어를 활용한 내용기반 예측 시스템을 제안한다. 이 시스템은 새로이 출시되는 영화에 대해 사용자의 영화에 대한 평가 정보를 예측하며, 추천의 근거가 되는 선호 단어를 제시한다. 또한 기존의 내용기반 예측 시스템에서 일어나는 속성 비매칭 문제로 인한 성능 저하를 막기 위해 기호 네트워크를 활용한 성능 개선 방법을 제안한다. 성능 비교를 위해 EachMovie 데이터베이스와 IMDb 사의 영화 홍보 데이터를 사용하였다.
본 연구는 어떤 소셜정보가 추천신뢰에 유의한 영향을 미치는지와 이들 간의 영향관계가 제품 관여도 수준에 따라 어떻게 달라지는지를 실증적으로 살펴보는 것을 목표로 하고 있다. 관련 선행연구에 대한 검토 결과를 토대로 추천신뢰에 유의한 영향을 미칠 것으로 예상되는 소셜정보의 구성요소로써 친밀감, 유사성, 성실성, 명성 등 네 가지 요소를 도출하였으며, 이들 소셜정보와 추천신뢰 간의 영향관계에 관한 연구모형 구축 및 가설검정을 실시하였다. 더불어 소셜정보와 추천신뢰 간의 관계에 있어 제품 관여도가 유의한 조절효과를 가지는지 분석해 보았다. Google Docs 사용자들을 대상으로 온라인 설문조사를 수행한 결과, 총 55명의 응답자로부터 205개의 신뢰 관계(링크)에 관한 자료를 수집하여 가설검정을 실시한 결과는 다음과 같다. 첫째, 소셜정보의 네 가지 차원인 친밀성, 유사성, 성실성, 명성은 모두 추천신뢰에 긍정적인 영향을 미치는 것으로 밝혀졌다. 둘째, 소셜정보 중 친밀성 및 명성과 추천신뢰 간의 관계에 있어 제품 관여도가 유의한 조절효과를 가지는 것으로 나타났다. 연구결과를 토대로 관련 분야에 대한 학문적, 관리적 차원의 시사점을 도출하였으며, 향후 연구방향을 제시하였다.
세계적인 전자상거래 기업들은 지속 가능한 경쟁력을 확보하기 위해 사용자 맞춤형 추천 서비스를 제공하고 있다. 기존 관련 연구에서는 주로 평점, 구매 여부 등 정량적 선호도 정보를 사용하여 개인화 추천 서비스를 제공하였다. 하지만 이와 같은 정량적 선호도 정보를 사용하여 개인화 추천 서비스를 제공하면 추천 성능이 저하될 수 있다는 문제점이 제기되고 있다. 호텔을 이용한 사용자가 호텔 서비스, 청결 상태 등에 대하여 만족하지 못한다고 리뷰를 작성하였으나 선호도 평점 5점을 부여했을 때 정량적 선호도(평점)와 정성적 선호도(리뷰)가 불일치한 문제가 발생할 수 있다. 따라서 본 연구에서는 정량적 선호도 정보와 정성적 선호도 정보가 일치하는지를 확인하고 이를 바탕으로 선호도 정보가 일치하는 사용자를 바탕으로 새로운 프로파일을 구축하여 개인화 추천 서비스를 제공하고자 한다. 리뷰에서 정성적 선호도를 추출하기 위해 자연어 처리 관련 연구에서 널리 사용되고 있는 CNN, LSTM, CNN + LSTM 등 딥러닝 기법을 사용하여 감성분석 모델을 구축하였다. 이를 통해 사용자가 작성한 리뷰에서 정성적 선호도 정보를 정교하게 추출하여 정량적 선호도 정보와 비교하였다. 본 연구에서 제안한 추천 방법론의 성능을 평가하기 위해 세계 최대 여행 플랫폼 TripAdvisor에서 실제 호텔을 이용한 사용자 선호도 정보를 수집하여 사용하였다. 실험 결과 본 연구에서 제안한 추천 방법론이 기존의 정량적 선호도만을 고려하는 추천 방법론보다 우수한 추천 성능을 나타냄을 확인할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권8호
/
pp.2743-2762
/
2014
Promoted by cloud technology and new websites, plenty and variety of Web services are emerging in the Internet. Meanwhile some Web services become outdated even obsolete due to new versions, and a normal phenomenon is that some services work well only with other services of older versions. These laggard or improper services are lowering the performance of the composite service they involved in. In addition, using current technology to identify proper semantic services for a composite service is time-consuming and inaccurate. Thus, we proposed a clustering method and a recommendation method to deal with these problems. Clustering technology is used to classify semantic services according to their topics, functionality and other aspects from plenty of services. Recommendation technology is used to predict the possible preference of a composite service, and recommend possible component services to the composite service according to the history information of invocations and similar composite services. The experiments show that our clustering method with the help of Ontology and TF/IDF technology is more accurate than others, and our recommendation method has less average error than others in the series of missing rate.
Journal of the Korean Data and Information Science Society
/
제22권1호
/
pp.19-27
/
2011
온라인 사용자에게 선택의 어려움을 줄여주고 사용의도를 높이기 위해 만들어진 것이 추천시스템이다. 추천시스템은 정보검색과 정보필터링을 용이하게 하고, 정보 과잉의 문제를 해결하는 데에 많은 도움을 주고 있다. 본 연구의 목적은 웹 상점을 이용하는 사용자들의 클릭스트림 데이터를 분석하여 데이터 인접성의 차이를 확인하고, 이를 통해 상품추천을 제안하고자 하는 데에 있다. 본 연구에서 제안하는 추천시스템의 성과를 검증하기 위하여 실험을 통해 알아본 결과, 추천시스템 적용 전보다 적용 후에 사용자들의 구매 의도는 높아졌고 탐색시간은 줄어들었다.
Ali, Syed Mubarak;Ghani, Imran;Latiff, Muhammad Shafie Abd
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권1호
/
pp.446-465
/
2015
In this modern era of technology and information, e-learning approach has become an integral part of teaching and learning using modern technologies. There are different variations or classification of e-learning approaches. One of notable approaches is Personal Learning Environment (PLE). In a PLE system, the contents are presented to the user in a personalized manner (according to the user's needs and wants). The problem arises when a new user enters the system, and due to the lack of information about the new user's needs and wants, the system fails to recommend him/her the personalized e-learning contents accurately. This phenomenon is known as cold-start problem. In order to address this issue, existing researches propose different approaches for recommendation such as preference profile, user ratings and tagging recommendations. In this research paper, the implementation of a novel interaction-based approach is presented. The interaction-based approach improves the recommendation accuracy for the new-user cold-start problem by integrating preferences profile and tagging recommendation and utilizing the interaction among users and system. This research work takes leverage of the interaction of a new user with the PLE system and generates recommendation for the new user, both implicitly and explicitly, thus solving new-user cold-start problem. The result shows the improvement of 31.57% in Precision, 18.29% in Recall and 8.8% in F1-measure.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권1호
/
pp.109-134
/
2018
Collaborative Filtering (CF) is widely used in recommendation field, which can be divided into rating-based CF and learning-to-rank based CF. Although many methods have been proposed based on these two kinds of CF, there still be room for improvement. Firstly, the data sparsity problem still remains a big challenge for CF algorithms. Secondly, the malicious rating given by some illegal users may affect the recommendation accuracy. Existing CF algorithms seldom took both of the two observations into consideration. In this paper, we propose a recommendation method based on listwise learning-to-rank by incorporating users' social information. By taking both ratings and order of items into consideration, the Plackett-Luce model is presented to find more accurate similar users. In order to alleviate the data sparsity problem, the improved matrix factorization model by integrating the influence of similar users is proposed to predict the rating. On the basis of exploring the trust relationship between users according to their social information, a listwise learning-to-rank algorithm is proposed to learn an optimal ranking model, which can output the recommendation list more consistent with the user preference. Comprehensive experiments conducted on two public real-world datasets show that our approach not only achieves high recommendation accuracy in relatively short runtime, but also is able to reduce the impact of malicious ratings.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.