• 제목/요약/키워드: Recommendation Technique

검색결과 227건 처리시간 0.032초

변형된 TSP 및 엘라스틱서치 알고리즘 기반의 최적 여행지 코스 추천 시스템 개발 (A Development of Optimal Travel Course Recommendation System based on Altered TSP and Elasticsearch Algorithm)

  • 김준영;조경호;박준;정세훈;심춘보
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.1108-1121
    • /
    • 2019
  • As the quality and level of life rise, many people are doing search for various pieces of information about tourism. In addition, users prefer the search methods reflecting individual opinions such as SNS and blogs to the official websites of tourist destination. Many of previous studies focused on a recommendation system for tourist courses based on the GPS information and past travel records of users, but such a system was not capable of recommending the latest tourist trends. This study thus set out to collect and analyze the latest SNS data to recommend tourist destination of high interest among users. It also aimed to propose an altered TSP algorithm to recommend the optimal routes to the recommended destination within an area and a system to recommend the optimal tourist courses by applying the Elasticsearch engine. The altered TSP algorithm proposed in the study used the location information of users instead of Dijkstra's algorithm technique used in previous studies to select a certain tourist destination and allowed users to check the recommended courses for the entire tourist destination within an area, thus offering more diverse tourist destination recommendations than previous studies.

Standardized Imaging and Reporting for Thyroid Ultrasound: Korean Society of Thyroid Radiology Consensus Statement and Recommendation

  • Min Kyoung Lee;Dong Gyu Na;Leehi Joo;Ji Ye Lee;Eun Ju Ha;Ji-Hoon Kim;So Lyung Jung;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • 제24권1호
    • /
    • pp.22-30
    • /
    • 2023
  • Ultrasonography (US) is a primary imaging modality for diagnosing nodular thyroid disease and has an essential role in identifying the most appropriate management strategy for patients with nodular thyroid disease. Standardized imaging techniques and reporting formats for thyroid US are necessary. For this purpose, the Korean Society of Thyroid Radiology (KSThR) organized a task force in June 2021 and developed recommendations for standardized imaging technique and reporting format, based on the 2021 KSThR consensus statement and recommendations for US-based diagnosis and management of thyroid nodules. The goal was to achieve an expert consensus applicable to clinical practice.

NFC를 이용한 스마트폰 상의 사회 공학적 공격 방지 기법 연구 (A Study of Preventing Social Engineering Attack on Smartphone with Using NFC)

  • 서장원;이은영
    • 디지털산업정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.23-35
    • /
    • 2015
  • When people stands near someone's mobile device, it can easily be seen by others. To rephrase this, attackers use human psychology to earn personal information or credit information or other. People are exposed by social engineering attacks. It is certain that we need more than just recommendation for the security to avoid social engineering attacks. This is why I proposed this paper. In this paper, I proposed an authentication technique using NFC and Hash function to stand against social engineering attack. Proposed technique result is showing that it could prevent shoulder surfing, touch event information, spyware attack using screen capture and smudge attack which relies on detecting the oily smudges left behind by user's fingers. Besides smart phone, IPad, Galaxy tab, Galaxy note and more mobile devices has released and releasing. And also, these mobile devices usage rate is increasing widely. We need to attend these matters and study in depth.

데이터 마이닝을 활용한 병원 재방문도 영향요인 분석 : 외래환자의 만족도를 중심으로 (On the Determination of Outpatient's Revisit using Data Mining)

  • 이견직
    • 보건행정학회지
    • /
    • 제13권3호
    • /
    • pp.21-34
    • /
    • 2003
  • Patient revisit to used hospital is a key factor in determining a health care organization's competitive advantage and survival. This article examines the relationship between customer's satisfaction and his/her revisit associated with three different methods which are the Chi Square Automatic Interaction Detection(CHAID) for segmenting the outpatient group, logistic regression and neural networks for addressing the outpatient's revisit. The main findings indicate that the important factors on outpatient's revisit are physician's kindness, nurse's skill, overall level of satisfaction, hospital reputation, recommendation, level of diagnoses and outpatient's age. Among these ones, physician's kindness is the most important factor as guidelines for decision of their revisit. The decision maker of hospital should select the strategy containing the variable amount of the level of revisit and size of outpatient's group under the constraint on the hospital's time, budget and manpower given. Finally, this study shows that neural networks, as non-parametric technique, appear to more correctly predict revisit than does logistic regression as a parametric estimation technique.

Extraction of User Preference for Hybrid Collaborative Filtering

  • Qing Li;Kim, Byeong-Man;Shin, Yoon-Sik;Lim, En-Ki
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.7-9
    • /
    • 2004
  • With the development of e-commerce and information access, recommender systems have become a popular technique to prune large information spaces so that users are directed toward those items that best meet their needs and preferences. In this paper, clustering technique is applied in the collaborative recommender framework to consider semantic contents available from the user profiles. We also suggest methods to construct user profiles from rating information and attributes of items to accommodate user preferences. Further, we show that the correct application of the semantic content information obtained from user profiles does enhance the effectiveness of collaborative recommendation.

  • PDF

네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구 (A Study on the Effect of Network Centralities on Recommendation Performance)

  • 이동원
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.23-46
    • /
    • 2021
  • 개인화 추천에서 많이 사용되는 협업 필터링은 고객들의 구매이력을 기반으로 유사고객을 찾아 상품을 추천할 수 있는 매우 유용한 기법으로 인식되고 있다. 그러나, 전통적인 협업 필터링 기법은 사용자 간에 직접적인 연결과 공통적인 특징을 기반으로 유사도를 계산하는 방식으로 인해 신규 고객 혹은 상품에 대해 유사도를 계산하기 힘들다는 문제가 제기되어 왔다. 이를 극복하기 위하여, 다른 기법을 함께 사용하는 하이브리드 기법이 고안되기도 하였다. 이런 노력의 하나로서, 사회연결망의 구조적 특성을 적용하여 이런 문제를 해결하려는 시도가 있었다. 이는, 직접적으로 유사성을 찾기 힘든 사용자 간에도 둘 사이에 놓인 유사한 사용자 또는 사용자들을 통해 유추해내는 방식으로 상호 간의 유사성을 계산하는 방식을 적용한 것이다. 즉, 구매 데이터를 기반으로 사용자의 네트워크를 생성하고 이 네트워크 내에서 두 사용자를 간접적으로 이어주는 네트워크의 특성을 기반으로 둘 사이의 유사도를 계산하는 것이다. 이렇게 얻은 유사도는 추천대상 고객이 상품의 추천에 대한 수락여부를 결정하는 척도로 활용될 수 있다. 서로 다른 중심성 척도는 추천성과에 미치는 영향이 서로 다를 수 있다는 점에서 중요한 의미를 갖는다 할 수 있다. 이런 유사도의 계산을 위해서 네트워크의 중심성을 활용할 수 있다. 본 연구에서는 여기서 더 나아가 이런 중심성이 추천성과에 미치는 영향이 추천 알고리즘에 따라서도 다를 수 있다는 데에서 주목하여 수행되었다. 또한, 이런 네트워크 분석을 활용한 추천기법은 신규 고객 혹은 상품뿐만 아니라 전체 고객 혹은 상품으로 그 대상을 넓히더라도 추천 성능을 높이는 데 기여할 것을 기대할 수 있을 것이다. 이런 관점에서 본 연구는 네트워크 모형에서 연결선이 생성되는 것을 이진 분류의 문제로 보고, 추천 모형에 적용할 분류 기법으로 의사결정나무, K-최근접이웃법, 로지스틱 회귀분석, 인공신경망, 서포트 벡터 머신을 선택하고, 온라인 쇼핑몰에서 4년2개월간 수집된 구매 데이터로 실험을 진행하였다. 사회연결망에서 측정된 중심성 척도를 각 분류 기법에 적용하여 생성한 모형을 비교 실험한 결과, 각 모형 별로 중심성 척도의 추천성공률이 서로 다르게 나타남을 확인할 수 있었다.

협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템 (SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering)

  • 조용민;남기환
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.77-110
    • /
    • 2017
  • 최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.

사용자 큐레이션을 위한 빅데이터 영상 분석 기법 비교 (Comparison of big data image analysis techniques for user curation)

  • 이현섭;김진덕
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.563-565
    • /
    • 2021
  • 최근 증가하는 콘텐츠 제공 서비스의 가장 큰 특징은 콘텐츠의 시간의 흐름에 따른 콘텐츠 증가량이 매우 크다는 것이다. 이에 따라 사용자 큐레이션의 중요성이 같이 증가하고 있으며 이를 구현하기 위한 여러 가지 기법들이 사용되고 있다. 본 논문에서는 영상 추천을 위한 기법 중 음성데이터 및 자막을 활용한 분석 기법과 키프레임 추출 기반 영상 비교 기법을 실제 빅데이터 영상 콘텐츠를 대상으로 구현, 적용한 결과에 대하여 비교한다. 또한, 비교결과를 통해 각 분석 기법이 적용될 수 있는 영상 콘텐츠 환경에 대하여 제안한다.

  • PDF

도메인 온톨로지를 이용한 개인화된 개념기반 검색 기법 (A Personalized Concept-based Retrieval Technique Using Domain Ontology)

  • 문현정;이수진;김영지;우용태
    • 한국전자거래학회지
    • /
    • 제12권3호
    • /
    • pp.269-282
    • /
    • 2007
  • 본 논문에서는 도메인 온톨로지를 사용하여 개인화 된 개념 기반의 검색 기법을 제안하였다. 제안 모델은 도메인 온톨로지를 이용한 컨텐츠의 대표 개념 추출, 컨텐츠 가중치와 개념 가중치를 이용한사용자 프로파일 구성 그리고 개인화 된 개념 기반 검색 과정으로 구성된다. 컨텐츠의 대표 개념은 TScore 기법을 이용하여 추출하였고, 사용자 프로파일은 개인 정보 수집 모듈을 통해 개념 가중치가 높은 개념을 대상으로 구성하였다. 개념 기반 검색을 위해 사용자 프로파일의 개념 집합과 컨텐츠의 대표 개념 집합간에 유사도를 비교하여 개인이 선호하는 개념의 우선순위에 의해 컨텐츠를 검색하였다. 본 논문에서 제안한 기법의 효율성을 검증하기 위하여 인터넷 사이트에서 컨텐츠를수집하고사용자프로파일을구성하여 실험하였다. 실험 결과, 제안한 검색기법이 기존의 기반의 검색 기법에 비해 우수함을 보였다. 제안된 기법은 개인화 된 추천 시스템이나 전자 도서관 등과 같은 분야에서 효율적으로 적용할 수 있으리라 기대된다.

  • PDF

전시장 참관객의 계획되지 않은 방문행동에 있어서 부스추천시스템의 영향에 대한 연구 (A Study on the Effect of Booth Recommendation System on Exhibition Visitors Unplanned Visit Behavior)

  • 정남호;김재경
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.175-191
    • /
    • 2011
  • 국가신성장동력으로MICE(Meeting, Incentive travel, Convention, Exhibition) 산업이각광받으면서국내전시산업에 대한 관심이 드높아 지고 있다. 이에 따라 국내 전시산업(domestic exhibition industry)도 미국이나 유럽과 같이 전시성과를 향상시키기 위한 다양한 연구가 진행 중이다. 그 중에서도 전시환경이나 전시기법 등에 따라 관람효과가 다르기 때문에 지능형 정보기술을 이용하여 전시장에 방문한 참관객의 참관패턴을 분석하여 참관객을 이해하고 더 나아가 참여업체 간의 연관관계 도출 및 전시회의 성과를 높이고자 하는 연구들이 진행되고 있다. 그런데, 이러한 기존의 부스추천시스템과 관련된 연구를 살펴보면 시스템적인 관점에서 추천의 정확성만을 논하고 있을 뿐 추천을 통한 참관객의 행동이나 인식의 변화에 대해서는 충분히 논의하고 있지 못하다. 부스추천시스템(Booth Recommendation System)은 참관객의 부스방문 정보를 바탕으로 참관객에게 적절한 부스를 추천하기 때문에 참관객은 사전에 계획하지 않은 전시장을 방문하게 될 수 있다. 이 때 참관객은 계획하지 않은 방문행동을 통해서 만족할 수도 있지만 추천과 정이 번거롭다거나 자유롭게 참관을 하는데 방해가 된다고 생각할 수 있다. 이 경우 참관객의 자유로운 관람보다 오히려 더 좋지 않은 성과를 낼 수 있다. 따라서 부스 추천시스템을 전시장에 적용하기 위해서는 시스템의 성과에 미치는 영향요인이 무엇인지 전반적으로 검토하고, 부스추천시스템이 참관객의 계획되지 않은 방문행동에 미치는 영향에 대해 면밀히 검토해야 한다. 이에 본 연구에서는 부스추천시스템의 성과에 영향을 미치는 요인이 무엇인지 이론과 기존문헌을 통해 살펴보고자 하였다. 또한, 참관객의 지각된 부스추천시스템의 성과가 참관객의 계획되지 않은 행동에 대한 만족도와 부스추천시스템의 재사용의도에 어떤 영향을 미치는지 살펴보고자 하였다. 이러한 연구목적을 달성하기 위한 이론적 프레임워크로 본 연구는 계획되지 않은 행동이론(Unplanned Behavior Theory)을 도입하였다. 계획되지 않은 행동(unplanned behavior)이란 "소비자들이 사전에 계획하지 되지 않은 채 실행된 어떤 행동"으로 정의할 수 있다. 소비자들의 계획되지 않은 행동은 그 동안 마케팅 등 다양한 분야에서 연구되어 왔다. 특히, 마케팅에서는 계획되지 않은 행동 중 계획되지 않은 구매(unplanned purchasing)에 많은 관심을 두어 왔는데 이 개념은 종종 충동적 구매(impulsive purchasing)와 혼동되어 사용되곤 하였다. 그런데, 충동적 구매가 갑자기 무엇인가 구매를 해야하는 강하고 지속적인 충동(urge)이라고 본다면 계획되지 않은 구매는 구매의사결정의 시점이 상점에 들어가기 전이 아닌 상점 내에서 수행된다는 점이 다르다. 즉, 모든 충동적 구매는 비계획적이나, 모든 계획되지 않은 구매가 충동적인 구매는 아니다. 그런데, 왜 소비자들은 계획되지 않은 행동을 하는가? 이에 대해서는 학자들에 따라 여러 가지 의견이 있으나 소비자가 사전에 철저한 계획을 수립하지 않고 따라서 중간에 계획을 변화시킬만한 유연성(flexibility)이 있기 때문이라는 점에 일관된 의견을 보인다. 즉, 계획되지 않은 행동을 하는데 많은 비용이 소요된다면 소비자들은 사전에 수립한 계획을 변경하기 어렵게 될 것이기 때문이다. 본 연구에서 살펴보고자 하는 전시장 역시 참관객들은 방문하기 전에 전시장이 어떤 프로그램으로 구성되어 있는지 살펴보고, 어떤 부스를 방문할지를 사전에 계획하게 된다. 그 이유는 참관객들이 전시장 방문에 투입할 수 있는 시간은 한정되어 있는 반면에 전시회는 대규모의 다양한 부스로 운영되기 때문에 참관객들이 모든 부스를 참관한다는 것이 현실적으로 불가능하기 때문이다. 따라서 본 연구에서 제시하는 부스추천시스템이 참관객이 선호할 만한 부스를 추천하게 되면 참관객은 자신의 계획을 변화시켜서 부스추천시스템이 추천한 부스를 방문하게 된다. 이러한 방문행동은 소비자가 상점을 방문하거나, 관광객이 관광지에서 계획하지 않은 행동을 하는 것과 유사한 측면에서 이해가 가능하며 특히 최근 여행소비자들이 정보기기의 영향으로 계획되지 않은 행동을 하는 경우가 부쩍 증가한 추세와 동일한 맥락에서 이해가 가능하다. 이에 다음과 같은 연구모형을 설정하였다. 이 연구모형은 참관객이 지각한 부스추천시스템의 성과(performance)를 매개변수로 하고 있는데 이 성과에 영향을 미치는 요인으로 부스추천시스템에 대한 신뢰(trust), 전시장 참관객의 지식수준 (knowledge level), 부스 추천시스템의 기대된 개인화 (expected personalization) 그리고 부스추천시스템의 자유위협(threat to freedom)을 영향요인으로 파악하였다. 또한, 지각된 부스추천시스템 성과와 계획되지 않은 행동에 대한 참관객의 만족도와 향후 부스추천시스템의 재사용의도간의 인과관계도 파악하고자 하였다. 이 때 부스추천시스템에대한신뢰는권한(competence), 자선(benevolence), 그리고진실(integrity)의2차요인(2nd order factor)으로구성하고, 나머지 요인들은 1차 요인으로 구성하였다. 이를 검증하기 위해 2011 DMC Culture Open 행사에서 부스추천시스템을 테스트하기 위하여 시스템을 개발하고, 101명의 참관객을 대상으로 실증조사를 하여 분석하였다. 분석결과 첫째, 부스추천시스템에 있어서 참관객의 신뢰가 가장 중요한 요소이며 실제 해당 부스추천시스템을 이용한 참관객들은 신뢰를 통해 부스추천시스템이 성과 있다고 인식하였다. 둘째, 참관객의 지식수준 역시 부스추천시스템의 성과에 유의한 영향을 미쳤는데 이는 추천의 성과가 전시장에 대한 사전적 이해가 필요함을 의미한다. 즉, 전시장에 대한 이해가 높은 참관객이 부스추천시스템의 유용성을 더 잘 파악하는 것으로 나타났다. 셋째, 기대된 개인화 수준은 성과에 유의한 영향을 미치지 못했는데 이는 기존 연구와 다른 결과로 본 연구에 사용된 부스추천시스템이 충분히 개인화 서비스를 제공하지 못했기 때문이라고 판단된다. 넷째, 부스추천시스템의 추천정보는 개인의 자유를 위협하거나 제한한다고 느끼지 않음으로 충분히 유용한 가치를 갖는다고 할 수 있다. 끝으로 부스정보시스템의 높은 성과는 참관객들의 계획되지 않은 행동에 대한 높은 만족도와 향후에도 부스추천시스템을 재사용할 의도를 만드는 것으로 나타났다. 이와 같이 본 연구는 부스추천시스템이 야기하는 참관객의 계획되지 않은 부스방문행동에 미치는 영향력을 분석하기 위해 계획되지 않은 행동이론을 중심으로 실증자료를 이용하여 분석하고, 이를 통해 향후 부스추천시스템의 구축 및 설계에 유용한 시사점을 도출할 수 있었다. 향후에는 보다 정교한 설문구성과 측정대상을 이용하여 추가적인 검토가 필요할 것으로 기대된다.