• 제목/요약/키워드: Recommendation Technique

검색결과 227건 처리시간 0.034초

추천기법별 고객 선호도 및 영향요인에 대한 분석: 전자제품과 의류군에 대한 비교연구 (An Analysis of Customer Preferences of Recommendation Techniques and Influencing Factors: A Comparative Study of Electronic Goods and Apparel Products)

  • 박윤주
    • 경영정보학연구
    • /
    • 제18권2호
    • /
    • pp.59-77
    • /
    • 2016
  • 전자상거래 시장에서는 점차 다양한 추천기법들이 적용되고 있으나, 고객 관점에서 이에 대한 사용의도를 비교 분석한 연구는 매우 드물다. 본 연구는, 온라인 쇼핑몰에서 널리 활용되고 있는 베스트셀러 추천, MD(Merchandiser)추천, 내용기반 추천, 협업필터링 추천, 그리고 지인추천 등의 다섯 가지 추천기법들에 대한 고객의 사용의도를, 전자제품군 구매 시와 의류군 구매 시에 대해서 비교 분석하였다. 이와 더불어, 어떠한 요소들이 고객의 추천서비스 사용의도에 영향을 미치는지에 대한 연구를 수행하였다. 이를 위해, 추천서비스 사용경험이 있는 전자상거래 사용자 총 220명을 대상으로 설문조사를 수행한 후, 분산분석(ANOVA), 회귀분석 등을 사용하여 데이터 분석을 수행하였다. 본 연구결과, 추천기법에 따른 고객의 추천서비스 사용의도에는 통계적으로 유의한 차이가 있으며, 특히 전자제품군 구매 시에는 베스트셀러 추천기법이, 의류군 구매 시에는 내용기반의 추천기법이 가장 선호되는 것으로 나타났다. 또한, 고객의 인물특성, 성격요인, 구매성향, 구매하려는 제품에 대한 인식 및 추천서비스에 대한 인식 등이 추천서비스 사용의도에 영향을 미치는 것으로 나타났으나, 세부적인 영향요소들은 추천기법별로 상이하게 도출되었다. 이러한 연구는 기업들에게 제품군 및 개인의 성향에 적합한 기법을 채택하여 추천서비스를 수행할 수 있도록 하는 가이드라인(guideline)을 제시해 줄 수 있을 것으로 기대된다.

RFM을 활용한 추천시스템 효율화 연구 (A Study on Improving Efficiency of Recommendation System Using RFM)

  • 정소라;진서훈
    • 대한설비관리학회지
    • /
    • 제23권4호
    • /
    • pp.57-64
    • /
    • 2018
  • User-based collaborative filtering is a method of recommending an item to a user based on the preference of the neighbor users who have similar purchasing history to the target user. User-based collaborative filtering is based on the fact that users are strongly influenced by the opinions of other users with similar interests. Item-based collaborative filtering is a method of recommending an item by comparing the similarity of the user's previously preferred items. In this study, we create a recommendation model using user-based collaborative filtering and item-based collaborative filtering with consumer's consumption data. Collaborative filtering is performed by using RFM (recency, frequency, and monetary) technique with purchasing data to recommend items with high purchase potential. We compared the performance of the recommendation system with the purchase amount and the performance when applying the RFM method. The performance of recommendation system using RFM technique is better.

상황기반과 협업 필터링 기법을 이용한 개인화 영화 추천 시스템 (Personalized Movie Recommendation System Using Context-Aware Collaborative Filtering Technique)

  • 김민정;박두순;홍민;이화민
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권9호
    • /
    • pp.289-296
    • /
    • 2015
  • 정보의 폭발적인 증가로 사용자들은 원하는 정보를 빠른 시간에 얻는 것이 힘들어졌다. 따라서 이 문제를 해결하기 위한 다양한 방식의 새로운 서비스들이 제공되고 있다. 개인에게 맞는 맞춤 서비스를 제공하는 것이 중요하게 부각되면서 개인화 추천 시스템이 매우 중요하게 되었다. 추천 시스템 중 협업 필터링은 추천 시스템에서 널리 사용되고 있고 개인화 추천 시스템 중에서 가장 성공적인 방법이다. 협업 필터링 방법은 고객들의 프로파일 정보를 기반으로 추천을 하므로 희박성 문제와 cold-start 문제가 있다. 본 논문에서는 개인에게 더 정확하게 추천하기 위해 협업 필터링 기법과 상황기반 기법을 함께 이용하는 방법을 제안한다. 상황기반 기법은 사용자를 둘러싼 시간, 감정, 장소 등과 같은 환경을 고려하여 사용자에게 맞는 아이템을 추천하는 방법으로 상황에 따라 달라지는 사용자의 선호도를 반영할 수 있다. 본 논문에서는 상황기반 기법을 활용하기 위해 상황정보로 감정을 이용하며 이를 위해 개인의 주관적인 정보를 파악하는 데 효과적인 영화 리뷰를 이용한다. 본 논문에서 제안한 방법은 기존의 협업 필터링 방법보다 성능평가 결과, 향상된 성능을 보였다.

필터링 기법을 이용한 도서 추천 시스템 구축 (Developing a Book Recommendation System Using Filtering Techniques)

  • 정영미;이용구
    • 정보관리연구
    • /
    • 제33권1호
    • /
    • pp.1-17
    • /
    • 2002
  • 이 연구에서는 최근에 주목받고 있는 협업 필터링 기법을 중심으로 여러 가지 추천 기법을 살펴본 후 대출대상 도서의 추천 시스템을 구축하였다. 연관성 규칙 기반 기법, 협업 필터링 기법, 내용기반 필터링 기법을 응용하여 실제 대학도서관에서 특정 이용자가 대출할 만한 도서를 추천하는 시스템을 구현하고 각 기법의 추천 성능을 평가하였다. 실험 결과 대출대상 도서를 추천하는 데 있어 협업 필터링 기법과 내용기반 필터링 기법을 각각 따로 적용하는 것보다 두 기법을 함께 이용한 혼합형 필터링 추천 기법이 더욱 효과적인 것으로 나타났다.

개인화된 제품 추천을 위한 고객 행동 기반 고객 프로파일링 기법 (Customer Behavior Based Customer Profiling Technique for Personalized Products Recommendation)

  • 박유진;정유진;장근녕
    • 경영과학
    • /
    • 제23권3호
    • /
    • pp.183-194
    • /
    • 2006
  • In this paper, we propose a customer profiling technique based on customer behavior for personalized products recommendation in Internet shopping mall. The proposed technique defines customer profile model based on customer behavior Information such as click data, buying data, market basket data, and interest categories. We also implement CBCPT(customer behavior based customer profiling technique) and perform extensive experiments. The experimental results show that CBCPT has higher MAE, precision, recall, and F1 than the existing other customer profiling technique.

XPDL 기반 모바일웹 추천기법 (A Mobile Web's Recommendation Technique based on XPDL)

  • 김철진;최광선
    • 한국산학기술학회논문지
    • /
    • 제14권11호
    • /
    • pp.5856-5865
    • /
    • 2013
  • 모바일앱의 플랫폼 종속성과 디바이스 자원 한계에 대한 이슈를 극복하기 위해 모바일웹 서비스에 대한 요구가 증가하고 있다. 이러한 모바일웹 서비스의 개발 및 운영 생산성을 향상시키기 위한 방법은 모바일웹들 간에 낮은 결합력을 제공하는 것이다. 본 논문에서는 결합력을 낮추기 위해 모바일웹 동적 연결의 추천기법을 제안한다. 모바일웹 추천기법은 XDPL 기반으로 제안한다.

협업 필터링 추천 시스템을 위한 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법 (Hybrid Preference Prediction Technique Using Weighting based Data Reliability for Collaborative Filtering Recommendation System)

  • 이오준;백영태
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권5호
    • /
    • pp.61-69
    • /
    • 2014
  • 협업 필터링 추천은 사용자의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 생성하고 이를 이용해 사용자의 특정 아이템에 대한 선호도를 예측한다. 따라서 선호도 행렬이 희박할 경우, 추천의 신뢰도는 급격히 낮아진다. 본 논문에서는 위 문제를 해결하기 위해 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법을 제안한다. 선호도 예측은 유사 아이템 집합과 유사 사용자 집합을 모두 생성하고 각 집합을 통해 사용자의 선호도를 예측하며, 모델의 상황을 반영한 가중치를 이용해 각 예측치를 병합하여 수행된다. 이 기법은 사용자 선호도 예측 정확도를 높이며 선호도 행렬 희박도가 높은 상황에도 추천 서비스의 신뢰도를 유지할 수 있도록 한다. 이 기법을 바탕으로 추천 시스템을 구현하고 절대평균오차를 기준으로 서비스 신뢰도 향상을 측정하였다. 실험에서 본 기법은 Hao Ji가 제안한 기존의 기법에 비해 선호도 행렬 희박도가 84% 이상인 상황에서 평균 21.7%의 성능 향상을 보여 효과적으로 행렬 희박도 문제를 해소할 수 있음을 검증하였다.

소비자의 감성과 소비유형을 이용한 협업여과기반 콘텐츠 추천 기법 (A Contents Recommendation Scheme Based on Collaborative Filtering Using Consumer's Affection and Consumption Type)

  • 최인복;박태근;이재동
    • 정보처리학회논문지D
    • /
    • 제15D권3호
    • /
    • pp.421-428
    • /
    • 2008
  • 협업여과 기법은 추천 시스템에서 널리 사용되는 기술이지만, 소비자의 참조그룹을 선정하는 방법에 따라 추천의 정확도가 달라지는 특성을 가지고 있다. 이에 본 논문에서는 콘텐츠 추천의 정확도를 높이기 위하여 소비자의 감성과 소비유형을 참조그룹으로 하여 협업여과기반으로 콘텐츠를 추천하는 기법을 제안한다. 소비자의 감성을 기쁨, 슬픔, 혐오, 행복, 이완 다섯 가지로 구분하고, 소비유형을 저실용/저쾌락, 저실용/고쾌락, 고실용/저쾌락, 고실용/고쾌락 네 가지로 구분하여 콘텐츠 추천 기법의 성능을 분석한 결과, 본 논문에서 제안하는 기법으로 콘텐츠를 추천한 경우가 소비자 감성과 소비유형을 고려하지 않은 전체 참조그룹으로 추천한 경우보다 정확도가 향상됨을 확인하였다.

A Cascade-hybrid Recommendation Algorithm based on Collaborative Deep Learning Technique for Accuracy Improvement and Low Latency

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • 한국멀티미디어학회논문지
    • /
    • 제23권1호
    • /
    • pp.31-42
    • /
    • 2020
  • During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.

인터넷 상점에서 개인화 광고를 위한 장바구니 분석 기법의 활용 (Application of Market Basket Analysis to Personalized advertisements on Internet Storefront)

  • 김종우;이경미
    • 경영과학
    • /
    • 제17권3호
    • /
    • pp.19-30
    • /
    • 2000
  • Customization and personalization services are considered as a critical success factor to be a successful Internet store or web service provider. As a representative personalization technique, personalized recommendation techniques are studied and commercialized to suggest products or services to a customer of Internet storefronts based on demographics of the customer or based on an analysis of the past purchasing behavior of the customer. The underlining theories of recommendation techniques are statistics, data mining, artificial intelligence, and/or rule-based matching. In the rule-based approach for personalized recommendation, marketing rules for personalization are usually collected from marketing experts and are used to inference with customers data. however, it is difficult to extract marketing rules from marketing experts, and also difficult to validate and to maintain the constructed knowledge base. In this paper, we proposed a marketing rule extraction technique for personalized recommendation on Internet storefronts using market basket analysis technique, a well-known data mining technique. Using marketing basket analysis technique, marketing rules for cross sales are extracted, and are used to provide personalized advertisement selection when a customer visits in an Internet store. An experiment has been performed to evaluate the effectiveness of proposed approach comparing with preference scoring approach and random selection.

  • PDF