TextRank 알고리즘을 활용한 연관 단어 추천 시스템과 사용자가 선택한 단어 기반 아이디어 생성 서비스를 반응형 웹으로 제공한다. 연관 단어 추천 시스템에서는 TextRank 알고리즘을 이용한 단어별 가중치 부여 방법 및 SoftMax를 적용한 확률 출력 방법을 논한다. 아이디어 생성 서비스에서는 mini-GPT를 이용한 아이디어 생성 방법과 인공지능 강화학습 방법에 대해 논한다. 반응형 웹에 대해서는 React와 Spring Boot, Flask 간의 연동 과정에 대해 논하며 전체적인 구동 방식에 대해 서술한다. 사용자가 원하는 주제를 입력하면 연관된 단어를 제공한다. 사용자는 연관된 단어를 선택하거나 원하는 단어를 추가하여 마인드맵을 구성한다. 사용자가 구성된 마인드맵에서 조합할 단어를 선택하면 새로 생성된 아이디어와 그와 연관된 특허를 제공한다. 본 웹서비스는 생성된 아이디어에 대해 다른 사용자와 공유할 수 있으며, 별점으로 사용자 피드백을 받아 인공지능을 개선한다.
최근 교통 기술의 발전과 여가생활에 대한 관심이 늘어남에 따라 여행이 주요 여가 활동으로 자리 잡고 있다. 또한, 스마트폰이나 태블릿PC와 같이 GPS를 탑재한 모바일 기기 보급으로 인해 사용자의 위치를 실시간으로 수집하는 것이 가능해졌다. 이런 환경을 바탕으로 번거로운 여행 일정 계획을 대신 수립해주는 여행 일정 추천 시스템에 대한 연구가 활발하게 진행되었다. 그러나 기존의 연구들은 사용자들의 비용이나 시간에 대한 제약사항을 고려해 짧은 경로를 포함하는 여행 일정을 추천하거나 여행 목적지에서 가장 인기 있는 지역을 가장 많이 포함하는 일정을 추천하는 것을 목적으로 하기 때문에 개인의 만족도를 높이기 위한 개인화된 여행 일정 추천시스템에 대한 연구는 많지 않았다. 따라서 본 연구에서는 사용자들의 만족도를 높이기 위한 개인화 서비스 연구의 일환으로 그 동안 다른 연구에서는 간과되었던 사용자들의 체류시간을 고려한 여행 일정 추천 시스템을 제안한다.
추천시스템은 과거 구매행동을 통해 사용자가 향후 구매할 것이라 예상되는 제품을 자동으로 검색하여 제공하는 시스템이다. 이러한 추천시스템은 여러 전자상거래 업체에서 도입하고 있으며, 사용자의 편의성 및 수익에 긍정적인 영향을 미치고 있다. 하지만 사용자가 어떠한 기준을 가지고 제품을 평가하는지, 어떠한 요소가 구매 의사 결정에 영향을 미치는지는 반영할 수 없다는 한계가 있다. 이에 본 연구에서는 사용자가 직접 작성한 구매후기를 통해, 사용자 별 제품 평가요소를 활용할 수 있는 추천 모형 알고리즘을 개발하였다. 토픽 모델링을 활용하여 사용자들의 구매후기를 분석하였으며, 이러한 후기의 특성이 반영된 커널과 평가 점수가 반영된 커널 등을 함께 활용하여 다중 커널 학습 기반의 추천 모형을 개발하였다. 또한, 이러한 모형을 BestBuy 사례에 적용하여 검증하였다. 검증 결과, 기존 협업적 필터링 알고리즘보다 다중 커널 학습에 의한 추천 모형의 정확도가 우수하였고, 구매후기의 유사성을 반영하였기에, 사용자가 어떠한 요소를 평가하는지를 확인할 수 있었다. 또한, 기존 협업적 필터링 알고리즘보다 다양한 제품에 대한 추천이 가능함을 확인할 수 있었다. 본 연구는 토픽 모델링과 커널 학습 기반을 사용한 융합적인 추천모형으로서, 온라인 추천시스템의 새로운 방법을 제안한다.
Mobility prediction is one of hot topics using location history information. It is useful for not only user-level applications such as people finder and recommendation sharing service but also for system-level applications such as hand-off management, resource allocation, and quality of service of wireless services. Most of current prediction techniques often use a set of significant locations without taking into account possible location information changes for prediction. Markov-based, LZ-based and Prediction by Pattern Matching techniques consider interesting locations to enhance the prediction accuracy, but they do not consider interesting location changes. In our paper, we propose an algorithm which integrates the changing or emerging new location information. This approach is based on Active LeZi algorithm, but both of new location and all possible location contexts will be updated in the tree with the fixed depth. Furthermore, the tree will also be updated even when there is no new location detected but the expected route is changed. We find that our algorithm is adaptive to predict next location. We evaluate our proposed system on a part of Dartmouth dataset consisting of 1026 users. An accuracy rate of more than 84% is achieved.
'실시간성', '사람들 간의 관계정보', '빅 데이터'와 같은 다양한 특성을 갖는 소셜 네트워크 콘텐츠는 개인화 추천 시스템의 성능 향상에 큰 도움이 되고 있다. 그 중 '사람들 간의 관계정보'가 가장 중요한 역할을 하기 때문에, 이를 활용한 다양한 연구가 진행되고 있다. 하지만 기존의 연구에서는 사람들간의 친밀도를 고려하지 않고 있어서 개인의 성향을 반영하기 어렵고 다양한 도메인에서 정확한 추천이 불가능하다. 본 논문은 기존 연구의 문제를 해결하기 위해 사용자간 친밀도를 측정하는 친밀도 알고리즘과 소셜 네트워크의 다양한 특성에 기반한 개인화 추천 알고리즘인 PReAmacy를 제안한다. 실험을 통해 PReAmacy가 기존의 알고리즘에 비해 높은 성능을 가지며 친밀도가 PReAmacy 알고리즘에 큰 비중을 차지한다는 것을 보였다.
최근 여행에 대한 관심이 높아지면서, 번거로운 여행 일정을 대신 수립해주는 여행 일정 추천 서비스에 대한 연구가 활발히 진행되고 있다. 여행 일정 추천에 있어 가장 중요하면서도 공통적으로 제시되는 목표는 여행 목적지 근처의 인기 관광지를 포함한 최단 거리 여행 경로를 제공하는 것이다. 다수의 기존 연구에서는 개인 맞춤형 스케줄 제공에 초점을 맞추었으며, 사용자의 여행 이동 경로 이력이나 SNS 리뷰가 존재하지 않을 경우 설문 조사가 필요한 문제점이 있었다. 또한 최단 거리를 계산할 때 발생할 수 있는 현실적인 문제점도 명확히 지적되지 않았다. 이와 관련하여, 본 논문에서는 소셜 빅데이터를 활용하여 인기 관광지를 알아내기 위한 정량화된 방법을 소개하고, 최단 거리 알고리즘 적용시 발생할 수 있는 문제점과 이를 해결하기 위한 휴리스틱 알고리즘을 함께 제시한다. 제안 방법을 검증하기 위해, 경상남도를 대상으로 63,000여 개의 플레이스 정보를 수집하고 빅데이터 분석을 수행했으며, 실험을 통해 제안한 휴리스틱 스케줄링 알고리즘이 실제 데이터 상에서 실시간 처리가 가능함을 확인하였다.
본 연구는 온라인동영상서비스 OTT(Over-the-Top) 이용자의 몰아보기(Binge-watching) 시청행위에 영향을 미치는 요인을 실증적으로 탐색하였다. 이를 위해 2018년 한국언론진흥재단 미디어연구센터의 'OTT 서비스 이용자 인식조사'에 참여한 OTT 이용 경험자 1,000명의 자료를 수집하여 분석하였다. 종속변수는 OTT 서비스 몰아보기로 설정하였으며, 독립변수는 성별, 연령, OTT 서비스 이용 빈도, OTT 콘텐츠 프로그램 추천 알고리즘 만족도, OTT에서 주로 이용하는 콘텐츠 유형을 포함하였다. OTT 몰아보기 시청행위의 예측 요인은 다층 퍼셉트론(MLP) 인공신경망 알고리즘을 이용하여 분석하였다. 연구결과, 연령, OTT 콘텐츠 프로그램 추천 알고리즘 만족도, OTT 서비스 이용 빈도, OTT에서 주로 이용하는 콘텐츠 유형 중 국내드라마, 국내영화, 해외드라마 등이 OTT 몰아보기 시청행위에 중요도가 높은 요인으로 밝혀졌다.
최근 디지털 음반시장의 성장으로, 들을 수 있는 음악의 양이 기하급수적으로 늘어나고 있다. 이로 인해 온라인 음원 서비스 이용자들은 마음에 드는 음악을 선택하는데 어려움을 겪고, 많은 시간을 낭비하게 되었다. 본 논문에서는 온라인 음원 서비스 이용자들이 겪는 선택의 어려움을 최소화하고, 낭비되는 시간을 줄이기 위한 추천 기법을 제안하고자 한다. 제안하는 기법은 개인정보의 이용 없이 아이템을 추천할 수 있는 아이템 기반 협업필터링 알고리즘을 사용한다. 더 정확한 추천을 위해 음원의 메타데이터를 이용하여 사용자의 선호도를 예측하고 선호도가 높은 Top-N개의 음악을 최종적으로 추천한다. 실험을 통해 제안하는 기법이 메타데이터를 이용하지 않을 때보다 추천 성능이 향상되는 것을 확인하였다.
본 논문에서는 XML과 SOAP 메시지 정규화 알고리즘을 수행하는 시스템을 설계 및 구현하였다. 따라서 더 정교하고 정규화된 문서로 변형하여 W3C 표준을 따르는 다른 응용 시스템과의 상호운용이 가능하다. 또한 웹 서비스 상호 운용성을 위한 XML 및 SOAP 메시지 교환 시 물리적 동일성이 요구되는 여러 시스템에서의 사용이 용이할 것으로 사료된다. 뿐만 아니라 국제적 인코딩 스킴과 국내 인코딩 스킴인 EUC-KR과의 변환기능을 추가함으로써 국내 실정에 맞는 XML 및 SOAP 정규화 알고리즘이 될 것이며, 이는 국제적 상호 운용성 확보의 기반 기술이 될 것이다.
Common Channel Signaling(CCS) networks need special controls to avoid overload of signaling networks and degradation of call process-ing rate, since they play an important role of controlling communication transfer networks. Congestion control and flow control mechanisms are well described in ITU-T recommendation on Signaling System No.7(SS7). For the practical provisions, however, we need an analysis on the relation among service objects, system requirements and implementation of congestion control algorithms. SS7 provides several options for controlling link congestion in CCS networks. In this paper we give a general queueing model of congestion control algorithm which covers both the international and national options. From the queuing model, we obtain the performance parameters such as throughput, message loss rate and mean delay for the international option. To show the performance of the algorithm, some numerical results are also given.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.