• 제목/요약/키워드: Recommendation Service Algorithm

검색결과 90건 처리시간 0.023초

TextRank 알고리즘 및 인공지능을 활용한 브레인스토밍 (Brainstorming using TextRank algorithms and Artificial Intelligence)

  • 이상영;유창민;홍기범;오준혁;문일영
    • 실천공학교육논문지
    • /
    • 제15권2호
    • /
    • pp.509-517
    • /
    • 2023
  • TextRank 알고리즘을 활용한 연관 단어 추천 시스템과 사용자가 선택한 단어 기반 아이디어 생성 서비스를 반응형 웹으로 제공한다. 연관 단어 추천 시스템에서는 TextRank 알고리즘을 이용한 단어별 가중치 부여 방법 및 SoftMax를 적용한 확률 출력 방법을 논한다. 아이디어 생성 서비스에서는 mini-GPT를 이용한 아이디어 생성 방법과 인공지능 강화학습 방법에 대해 논한다. 반응형 웹에 대해서는 React와 Spring Boot, Flask 간의 연동 과정에 대해 논하며 전체적인 구동 방식에 대해 서술한다. 사용자가 원하는 주제를 입력하면 연관된 단어를 제공한다. 사용자는 연관된 단어를 선택하거나 원하는 단어를 추가하여 마인드맵을 구성한다. 사용자가 구성된 마인드맵에서 조합할 단어를 선택하면 새로 생성된 아이디어와 그와 연관된 특허를 제공한다. 본 웹서비스는 생성된 아이디어에 대해 다른 사용자와 공유할 수 있으며, 별점으로 사용자 피드백을 받아 인공지능을 개선한다.

체류시간을 고려한 여행 일정 추천 시스템 (Personalized Itinerary Recommendation System based on Stay Time)

  • 박세화;박석
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권1호
    • /
    • pp.38-43
    • /
    • 2016
  • 최근 교통 기술의 발전과 여가생활에 대한 관심이 늘어남에 따라 여행이 주요 여가 활동으로 자리 잡고 있다. 또한, 스마트폰이나 태블릿PC와 같이 GPS를 탑재한 모바일 기기 보급으로 인해 사용자의 위치를 실시간으로 수집하는 것이 가능해졌다. 이런 환경을 바탕으로 번거로운 여행 일정 계획을 대신 수립해주는 여행 일정 추천 시스템에 대한 연구가 활발하게 진행되었다. 그러나 기존의 연구들은 사용자들의 비용이나 시간에 대한 제약사항을 고려해 짧은 경로를 포함하는 여행 일정을 추천하거나 여행 목적지에서 가장 인기 있는 지역을 가장 많이 포함하는 일정을 추천하는 것을 목적으로 하기 때문에 개인의 만족도를 높이기 위한 개인화된 여행 일정 추천시스템에 대한 연구는 많지 않았다. 따라서 본 연구에서는 사용자들의 만족도를 높이기 위한 개인화 서비스 연구의 일환으로 그 동안 다른 연구에서는 간과되었던 사용자들의 체류시간을 고려한 여행 일정 추천 시스템을 제안한다.

고객 온라인 구매후기를 활용한 추천시스템 개발 및 적용 (An Online Review Mining Approach to a Recommendation System)

  • 조승연;최지은;이규현;김희웅
    • 경영정보학연구
    • /
    • 제17권3호
    • /
    • pp.95-111
    • /
    • 2015
  • 추천시스템은 과거 구매행동을 통해 사용자가 향후 구매할 것이라 예상되는 제품을 자동으로 검색하여 제공하는 시스템이다. 이러한 추천시스템은 여러 전자상거래 업체에서 도입하고 있으며, 사용자의 편의성 및 수익에 긍정적인 영향을 미치고 있다. 하지만 사용자가 어떠한 기준을 가지고 제품을 평가하는지, 어떠한 요소가 구매 의사 결정에 영향을 미치는지는 반영할 수 없다는 한계가 있다. 이에 본 연구에서는 사용자가 직접 작성한 구매후기를 통해, 사용자 별 제품 평가요소를 활용할 수 있는 추천 모형 알고리즘을 개발하였다. 토픽 모델링을 활용하여 사용자들의 구매후기를 분석하였으며, 이러한 후기의 특성이 반영된 커널과 평가 점수가 반영된 커널 등을 함께 활용하여 다중 커널 학습 기반의 추천 모형을 개발하였다. 또한, 이러한 모형을 BestBuy 사례에 적용하여 검증하였다. 검증 결과, 기존 협업적 필터링 알고리즘보다 다중 커널 학습에 의한 추천 모형의 정확도가 우수하였고, 구매후기의 유사성을 반영하였기에, 사용자가 어떠한 요소를 평가하는지를 확인할 수 있었다. 또한, 기존 협업적 필터링 알고리즘보다 다양한 제품에 대한 추천이 가능함을 확인할 수 있었다. 본 연구는 토픽 모델링과 커널 학습 기반을 사용한 융합적인 추천모형으로서, 온라인 추천시스템의 새로운 방법을 제안한다.

Mobility Prediction Algorithms Using User Traces in Wireless Networks

  • Luong, Chuyen;Do, Son;Park, Hyukro;Choi, Deokjai
    • 한국멀티미디어학회논문지
    • /
    • 제17권8호
    • /
    • pp.946-952
    • /
    • 2014
  • Mobility prediction is one of hot topics using location history information. It is useful for not only user-level applications such as people finder and recommendation sharing service but also for system-level applications such as hand-off management, resource allocation, and quality of service of wireless services. Most of current prediction techniques often use a set of significant locations without taking into account possible location information changes for prediction. Markov-based, LZ-based and Prediction by Pattern Matching techniques consider interesting locations to enhance the prediction accuracy, but they do not consider interesting location changes. In our paper, we propose an algorithm which integrates the changing or emerging new location information. This approach is based on Active LeZi algorithm, but both of new location and all possible location contexts will be updated in the tree with the fixed depth. Furthermore, the tree will also be updated even when there is no new location detected but the expected route is changed. We find that our algorithm is adaptive to predict next location. We evaluate our proposed system on a part of Dartmouth dataset consisting of 1026 users. An accuracy rate of more than 84% is achieved.

PReAmacy: 소셜 네트워크 서비스에서 콘텐츠와 사용자의 친밀도를 고려한 개인화 추천 알고리즘 (PReAmacy: A Personalized Recommendation Algorithm considering Contents and Intimacy between Users in Social Network Services)

  • 서영덕;김정동;백두권
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제41권4호
    • /
    • pp.209-216
    • /
    • 2014
  • '실시간성', '사람들 간의 관계정보', '빅 데이터'와 같은 다양한 특성을 갖는 소셜 네트워크 콘텐츠는 개인화 추천 시스템의 성능 향상에 큰 도움이 되고 있다. 그 중 '사람들 간의 관계정보'가 가장 중요한 역할을 하기 때문에, 이를 활용한 다양한 연구가 진행되고 있다. 하지만 기존의 연구에서는 사람들간의 친밀도를 고려하지 않고 있어서 개인의 성향을 반영하기 어렵고 다양한 도메인에서 정확한 추천이 불가능하다. 본 논문은 기존 연구의 문제를 해결하기 위해 사용자간 친밀도를 측정하는 친밀도 알고리즘과 소셜 네트워크의 다양한 특성에 기반한 개인화 추천 알고리즘인 PReAmacy를 제안한다. 실험을 통해 PReAmacy가 기존의 알고리즘에 비해 높은 성능을 가지며 친밀도가 PReAmacy 알고리즘에 큰 비중을 차지한다는 것을 보였다.

Travel Route Recommendation Utilizing Social Big Data

  • Yu, Yang Woo;Kim, Seong Hyuck;Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.117-125
    • /
    • 2022
  • 최근 여행에 대한 관심이 높아지면서, 번거로운 여행 일정을 대신 수립해주는 여행 일정 추천 서비스에 대한 연구가 활발히 진행되고 있다. 여행 일정 추천에 있어 가장 중요하면서도 공통적으로 제시되는 목표는 여행 목적지 근처의 인기 관광지를 포함한 최단 거리 여행 경로를 제공하는 것이다. 다수의 기존 연구에서는 개인 맞춤형 스케줄 제공에 초점을 맞추었으며, 사용자의 여행 이동 경로 이력이나 SNS 리뷰가 존재하지 않을 경우 설문 조사가 필요한 문제점이 있었다. 또한 최단 거리를 계산할 때 발생할 수 있는 현실적인 문제점도 명확히 지적되지 않았다. 이와 관련하여, 본 논문에서는 소셜 빅데이터를 활용하여 인기 관광지를 알아내기 위한 정량화된 방법을 소개하고, 최단 거리 알고리즘 적용시 발생할 수 있는 문제점과 이를 해결하기 위한 휴리스틱 알고리즘을 함께 제시한다. 제안 방법을 검증하기 위해, 경상남도를 대상으로 63,000여 개의 플레이스 정보를 수집하고 빅데이터 분석을 수행했으며, 실험을 통해 제안한 휴리스틱 스케줄링 알고리즘이 실제 데이터 상에서 실시간 처리가 가능함을 확인하였다.

OTT(Over-the-Top) 서비스의 몰아보기 시청행위 영향 요인 탐색 (Examining Factors Affecting the Binge-Watching Behaviors of OTT Services)

  • 황경호;김경애
    • 한국융합학회논문지
    • /
    • 제11권3호
    • /
    • pp.181-186
    • /
    • 2020
  • 본 연구는 온라인동영상서비스 OTT(Over-the-Top) 이용자의 몰아보기(Binge-watching) 시청행위에 영향을 미치는 요인을 실증적으로 탐색하였다. 이를 위해 2018년 한국언론진흥재단 미디어연구센터의 'OTT 서비스 이용자 인식조사'에 참여한 OTT 이용 경험자 1,000명의 자료를 수집하여 분석하였다. 종속변수는 OTT 서비스 몰아보기로 설정하였으며, 독립변수는 성별, 연령, OTT 서비스 이용 빈도, OTT 콘텐츠 프로그램 추천 알고리즘 만족도, OTT에서 주로 이용하는 콘텐츠 유형을 포함하였다. OTT 몰아보기 시청행위의 예측 요인은 다층 퍼셉트론(MLP) 인공신경망 알고리즘을 이용하여 분석하였다. 연구결과, 연령, OTT 콘텐츠 프로그램 추천 알고리즘 만족도, OTT 서비스 이용 빈도, OTT에서 주로 이용하는 콘텐츠 유형 중 국내드라마, 국내영화, 해외드라마 등이 OTT 몰아보기 시청행위에 중요도가 높은 요인으로 밝혀졌다.

메타데이터를 이용한 음악 추천 기법 (Music Recommendation Technique Using Metadata)

  • 이혜인;윤성대
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.75-78
    • /
    • 2018
  • 최근 디지털 음반시장의 성장으로, 들을 수 있는 음악의 양이 기하급수적으로 늘어나고 있다. 이로 인해 온라인 음원 서비스 이용자들은 마음에 드는 음악을 선택하는데 어려움을 겪고, 많은 시간을 낭비하게 되었다. 본 논문에서는 온라인 음원 서비스 이용자들이 겪는 선택의 어려움을 최소화하고, 낭비되는 시간을 줄이기 위한 추천 기법을 제안하고자 한다. 제안하는 기법은 개인정보의 이용 없이 아이템을 추천할 수 있는 아이템 기반 협업필터링 알고리즘을 사용한다. 더 정확한 추천을 위해 음원의 메타데이터를 이용하여 사용자의 선호도를 예측하고 선호도가 높은 Top-N개의 음악을 최종적으로 추천한다. 실험을 통해 제안하는 기법이 메타데이터를 이용하지 않을 때보다 추천 성능이 향상되는 것을 확인하였다.

  • PDF

XML 및 SOAP 메시지 정규화 알고리즘 (Algorithm of XML and SOAP Messages Canonicalization)

  • 정회경
    • 공학논문집
    • /
    • 제6권1호
    • /
    • pp.125-137
    • /
    • 2004
  • 본 논문에서는 XML과 SOAP 메시지 정규화 알고리즘을 수행하는 시스템을 설계 및 구현하였다. 따라서 더 정교하고 정규화된 문서로 변형하여 W3C 표준을 따르는 다른 응용 시스템과의 상호운용이 가능하다. 또한 웹 서비스 상호 운용성을 위한 XML 및 SOAP 메시지 교환 시 물리적 동일성이 요구되는 여러 시스템에서의 사용이 용이할 것으로 사료된다. 뿐만 아니라 국제적 인코딩 스킴과 국내 인코딩 스킴인 EUC-KR과의 변환기능을 추가함으로써 국내 실정에 맞는 XML 및 SOAP 정규화 알고리즘이 될 것이며, 이는 국제적 상호 운용성 확보의 기반 기술이 될 것이다.

  • PDF

PERFORMANCE ANALYSIS OF CONGESTION CONTROL ALGORITHM IN COMMON CHANNEL SIGNALING NETWORKS

  • Park, Chul-Geun;Ahn, Seong-Joon;Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.395-408
    • /
    • 2003
  • Common Channel Signaling(CCS) networks need special controls to avoid overload of signaling networks and degradation of call process-ing rate, since they play an important role of controlling communication transfer networks. Congestion control and flow control mechanisms are well described in ITU-T recommendation on Signaling System No.7(SS7). For the practical provisions, however, we need an analysis on the relation among service objects, system requirements and implementation of congestion control algorithms. SS7 provides several options for controlling link congestion in CCS networks. In this paper we give a general queueing model of congestion control algorithm which covers both the international and national options. From the queuing model, we obtain the performance parameters such as throughput, message loss rate and mean delay for the international option. To show the performance of the algorithm, some numerical results are also given.