• Title/Summary/Keyword: Recommendation Platform

Search Result 125, Processing Time 0.025 seconds

SaaS application mashup based on High Speed Message Processing

  • Chen, Zhiguo;Kim, Myoungjin;Cui, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1446-1465
    • /
    • 2022
  • Diversified SaaS applications allow users more choices to use, according to their own preferences. However, the diversification of SaaS applications also makes it impossible for users to choose the best one. Furthermore, users can't take advantage of the functionality between SaaS applications. In this paper, we propose a platform that provides an SaaS mashup service, by extracting interoperable service functions from SaaS-based applications that independent vendors deploy and supporting a customized service recommendation function through log data binding in the cloud environment. The proposed SaaS mashup service platform consists of a SaaS aggregation framework and a log data binding framework. Each framework was concreted by using Apache Kafka and rule matrix-based recommendation techniques. We present the theoretical basis of implementing the high-performance message-processing function using Kafka. The SaaS mashup service platform, which provides a new type of mashup service by linking SaaS functions based on the above technology described, allows users to combine the required service functions freely and access the results of a rich service-utilization experience, using the SaaS mashup function. The platform developed through SaaS mashup service technology research will enable various flexible SaaS services, expected to contribute to the development of the smart-contents industry and the open market.

Performance Evaluation of Recommendation Results through Optimization on Content Recommendation Algorithm Applying Personalization in Scientific Information Service Platform (과학 학술정보 서비스 플랫폼에서 개인화를 적용한 콘텐츠 추천 알고리즘 최적화를 통한 추천 결과의 성능 평가)

  • Park, Seong-Eun;Hwang, Yun-Young;Yoon, Jungsun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.183-191
    • /
    • 2017
  • In order to secure the convenience of information retrieval by users of scientific information service platforms and to reduce the time required to acquire the proper information, this study proposes an optimized content recommendation algorithm among the algorithms that currently provide service menus and content information for each service, and conducts comparative evaluation on the results. To enhance the recommendation accuracy, users' major items were added to the original algorithm, and performance evaluations on the recommendation results from the original and optimized algorithms were performed. As a result of this evaluation, we found that the relevance of the content provided to the users through the optimized algorithm was increased by 21.2%. This study proposes a method to shorten the information acquisition time and extend the life cycle of the results as valuable information by automatically computing and providing content suitable for users in the system for each service menu.

Implementation of a pet product recommendation system using big data (빅 데이터를 활용한 애완동물 상품 추천 시스템 구현)

  • Kim, Sam-Taek
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.19-24
    • /
    • 2020
  • Recently, due to the rapid increase of pets, there is a need for an integrated pet-related personalized product recommendation service such as feed recommendation using a health status check of pets and various collected data. This paper implements a product recommendation system that can perform various personalized services such as collection, pre-processing, analysis, and management of pet-related data using big data. First, the sensor information worn by pets, customer purchase patterns, and SNS information are collected and stored in a database, and a platform capable of customized personalized recommendation services such as feed production and pet health management is implemented using statistical analysis. The platform can provide information to customers by outputting similarity product information about the product to be analyzed and information, and finally outputting the result of recommendation analysis.

Design of a Recommendation System for Improving Deep Neural Network Performance

  • Juhyoung Sung;Kiwon Kwon;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • There have been emerging many use-cases applying recommendation systems especially in online platform. Although the performance of recommendation systems is affected by a variety of factors, selecting appropriate features is difficult since most of recommendation systems have sparse data. Conventional matrix factorization (MF) method is a basic way to handle with problems in the recommendation systems. However, the MF based scheme cannot reflect non-linearity characteristics well. As deep learning technology has been attracted widely, a deep neural network (DNN) framework based collaborative filtering (CF) was introduced to complement the non-linearity issue. However, there is still a problem related to feature embedding for use as input to the DNN. In this paper, we propose an effective method using singular value decomposition (SVD) based feature embedding for improving the DNN performance of recommendation algorithms. We evaluate the performance of recommendation systems using MovieLens dataset and show the proposed scheme outperforms the existing methods. Moreover, we analyze the performance according to the number of latent features in the proposed algorithm. We expect that the proposed scheme can be applied to the generalized recommendation systems.

Comparison of online video(OTT) content production technology based on artificial intelligence customized recommendation service (인공지능 맞춤 추천서비스 기반 온라인 동영상(OTT) 콘텐츠 제작 기술 비교)

  • CHUN, Sanghun;SHIN, Seoung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • In addition to the OTT video production service represented by Nexflix and YouTube, a personalized recommendation system for content with artificial intelligence has become common. YouTube's personalized recommendation service system consists of two neural networks, one neural network consisting of a recommendation candidate generation model and the other consisting of a ranking network. Netflix's video recommendation system consists of two data classification systems, divided into content-based filtering and collaborative filtering. As the online platform-led content production is activated by the Corona Pandemic, the field of virtual influencers using artificial intelligence is emerging. Virtual influencers are produced with GAN (Generative Adversarial Networks) artificial intelligence, and are unsupervised learning algorithms in which two opposing systems compete with each other. This study also researched the possibility of developing AI platform based on individual recommendation and virtual influencer (metabus) as a core content of OTT in the future.

Determinants of Wage for Web-based Platform Workers: In perspective of evaluation by previous employers (웹 기반형(Web-based) 플랫폼 노동자의 임금 결정요인: 이전 고용주에 의한 평가의 관점에서)

  • Lim, Jisun
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.1-14
    • /
    • 2022
  • The purpose of this study was to find the wage determinants of web-based platform workers. For this purpose, a total of 3,575 web-based platform workers' information from Freelancer.com, a global platform labor market, in September 2018 were used and whether or not newly available indicators such as evaluations by previous employers had a significant effect on the wage increase of platform workers using OLS and QR methods. As an OLS estimation results, the number of reviews, as well as education and experience, affects the wages of platform workers. However, as a result of the QR estimation, experience rather than education, recommendation rather than a review has a more significant effect on the wage of web-based platform workers as the wage level rises.

Distributed Recommendation System Using Clustering-based Collaborative Filtering Algorithm (클러스터링 기반 협업 필터링 알고리즘을 사용한 분산 추천 시스템)

  • Jo, Hyun-Je;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.101-107
    • /
    • 2014
  • This paper presents an efficient distributed recommendation system using clustering collaborative filtering algorithm in distributed computing environments. The system was built based on Hadoop distributed computing platform, where distributed Min-hash clustering algorithm is combined with user based collaborative filtering algorithm to optimize recommendation performance. Experiments using Movie Lens benchmark data show that the proposed system can reduce the execution time for recommendation compare to sequential system.

A Study on the Job Recommender System Using User Preference Information (사용자의 선호도 정보를 활용한 직무 추천 시스템 연구)

  • Li, Qinglong;Jeon, Sanghong;Lee, Changjae;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.20 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Recently, online job websites have been activated as unemployment problems have emerged as social problems and demand for job openings has increased. However, while the online job platform market is growing, users have difficulty choosing their jobs. When users apply for a job on online job websites, they check various information such as job contents and recruitment conditions to understand the details of the job. When users choose a job, they focus on various details related to the job rather than simply viewing and supporting the job title. However, existing online job websites usually recommend jobs using only quantitative preference information such as ratings. However, if recommendation services are provided using only quantitative information, the recommendation performance is constantly deteriorating. Therefore, job recommendation services should provide personalized services using various information about the job. This study proposes a recommended methodology that improves recommendation performance by elaborating on qualitative preference information, such as details about the job. To this end, this study performs a topic modeling analysis on the job content of the user profile. Also, we apply LDA techniques to explore topics from job content and extract qualitative preferences. Experiments show that the proposed recommendation methodology has better recommendation performance compared to the traditional recommendation methodology.

Personalized TV Program Recommendation in VOD Service Platform Using Collaborative Filtering (VOD 서비스 플랫폼에서 협력 필터링을 이용한 TV 프로그램 개인화 추천)

  • Han, Sunghee;Oh, Yeonhee;Kim, Hee Jung
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.88-97
    • /
    • 2013
  • Collaborative filtering(CF) for the personalized recommendation is a successful and popular method in recommender systems. But the mainly researched and implemented cases focus on dealing with independent items with explicit feedback by users. For the domain of TV program recommendation in VOD service platform, we need to consider the unique characteristic and constraints of the domain. In this paper, we studied on the way to convert the viewing history of each TV program episodes to the TV program preference by considering the series structure of TV program. The former is implicit for personalized preference, but the latter tells quite explicitly about the persistent preference. Collaborative filtering is done by the unit of series while data gathering and final recommendation is done by the unit of episodes. As a result, we modified CF to make it more suitable for the domain of TV program VOD recommendation. Our experimental study shows that it is more precise in performance, yet more compact in calculation compared to the plain CF approaches. It can be combined with other existing CF techniques as an algorithm module.