• Title/Summary/Keyword: Recommendation Method

Search Result 976, Processing Time 0.025 seconds

Analysis of Mood Tags For Music Recommendation (음악추천을 위한 분위기 태그 분석)

  • Moon, Chang Bae;Lee, Jong Yeol;Kim, Dong-Seong;Kim, Byeong Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • The tendency of buyers of web information is changing from the cost-effectiveness which emphasizes the performance over the price to the cost-satisfaction which emphasizes the psychological satisfaction of the buyer. In music recommendation, one of the methods to increase psychological satisfaction is to use the music mood. In this paper, a music recommendation method considering the mood tag and the synonyms tag is proposed and, as an intermediate result of the proposed method, mood tags and music pieces are expressed in Thayer's AV space and then their distribution are analyzed. The analysis result shows the distributions of mood tags and the ones of music pieces are similar, which implies that the proposed recommendation method can provide significant results. In the future, the music recommendation performance will be analyzed.

A Movie Recommendation Method based on Emotion Ontology (감정 온톨로지 기반의 영화 추천 기법)

  • Kim, Ok-Seob;Lee, Seok-Won
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1068-1082
    • /
    • 2015
  • Due to the rapid advancement of the mobile technology, smart phones have been widely used in the current society. This lead to an easier way to retrieve video contents using web and mobile services. However, it is not a trivial problem to retrieve particular video contents based on users' specific preferences. The current movie recommendation system is based on the users' preference information. However, this system does not consider any emotional means or perspectives in each movie, which results in the dissatisfaction of user's emotional requirements. In order to address users' preferences and emotional requirements, this research proposes a movie recommendation technology to represent a movie's emotion and its associations. The proposed approach contains the development of emotion ontology by representing the relationship between the emotion and the concepts which cause emotional effects. Based on the current movie metadata ontology, this research also developed movie-emotion ontology based on the representation of the metadata related to the emotion. The proposed movie recommendation method recommends the movie by using movie-emotion ontology based on the emotion knowledge. Using this proposed approach, the user will be able to get the list of movies based on their preferences and emotional requirements.

Social Network Based Music Recommendation System (소셜네트워크 기반 음악 추천시스템)

  • Park, Taesoo;Jeong, Ok-Ran
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.133-141
    • /
    • 2015
  • Mass multimedia contents are shared through various social media servies including social network service. As social network reveals user's current situation and interest, highly satisfactory personalized recommendation can be made when such features are applied to the recommendation system. In addition, classifying the music by emotion and using analyzed information about user's recent emotion or current situation by analyzing user's social network, it will be useful upon recommending music to the user. In this paper, we propose a music recommendation method that makes an emotion model to classify the music, classifies the music according to the emotion model, and extracts user's current emotional state represented on the social network to recommend music, and evaluates the validity of our method through experiments.

Collaborative Filtering by Consistency Based Trust Definition (일관성 기반의 신뢰도 정의에 의한 협업 필터링)

  • Kim, Hyoung-Do
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Many neighbors are needed for making the recommendation quality better and stable in collaborative filtering. Furthermore, the quality is not so good mainly due to a reason that high similarity between two users does not guarantee the same preference to items considered for recommendation. Dissimilar users who have consistency in item selection can be useful for predicting preferences. This paper proposes a new collaborative filtering method, defining trust based on consistency for improving this phenomenon. Empirical studies show that such a method reduces the number of neighbors required to make the recommendation quality stable and the recommendation quality itself is also significantly improved.

  • PDF

Cross-Product Category User Profiling for E-Commerce Personalized Recommendation (전자상거래 개인화 추천을 위한 상품 카테고리 중립적 사용자 프로파일링)

  • Park, Soo-Hwan;Lee, Hong-Joo;Cho, Nam-Jae;Kim, Jong-Woo
    • Asia pacific journal of information systems
    • /
    • v.16 no.3
    • /
    • pp.159-176
    • /
    • 2006
  • Collaborative filtering is one of the popular techniques for personalized recommendation in e-commerce. In collaborative filtering, user profiles are usually managed per product category in order to reduce data sparsity. Product diversification of Internet storefronts and multiple product category sales of e-commerce portals require cross-product category usage of user profiles in order to overcome the cold start problem of collaborative filtering. In this paper, we study the feasibility of cross-product category usage of user profiles, and suggest a method to improve recommendation performance of cross-product category user profiling. First, we investigate whether user profiles on a product category can be used to recommend products in other product categories. Furthermore, a way of utilizing user profiles selectively is suggested to increase recommendation performance of cross-product category user profiling. The feasibility of cross-product category user profiling and the usefulness of the proposed method are tested with real click stream data of an Internet storefront which sells multiple product categories including books, music CDs, and DVDs. The experiment results show that user profiles on a product category can be used to recommend products in other product categories. Also, the selective usage of user profiles based on correlations between subcategories of two product categories provides better performance than the whole usage of user profiles.

Evaluation of Collaborative Filtering Methods for Developing Online Music Contents Recommendation System (온라인 음악 콘텐츠 추천 시스템 구현을 위한 협업 필터링 기법들의 비교 평가)

  • Yoo, Youngseok;Kim, Jiyeon;Sohn, Bangyong;Jung, Jongjin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1083-1091
    • /
    • 2017
  • As big data technologies have been developed and massive data have exploded from users through various channels, CEO of global IT enterprise mentioned core importance of data in next generation business. Therefore various machine learning technologies have been necessary to apply data driven services but especially recommendation has been core technique in viewpoint of directly providing summarized information or exact choice of items to users in information flooding environment. Recently evolved recommendation techniques have been proposed by many researchers and most of service companies with big data tried to apply refined recommendation method on their online business. For example, Amazon used item to item collaborative filtering method on its sales distribution platform. In this paper, we develop a commercial web service for suggesting music contents and implement three representative collaborative filtering methods on the service. We also produce recommendation lists with three methods based on real world sample data and evaluate the usefulness of them by comparison among the produced result. This study is meaningful in terms of suggesting the right direction and practicality when companies and developers want to develop web services by applying big data based recommendation techniques in practical environment.

The Effect of Representativeness in News Recommendation Mechanisms on Audience Reactions in Online News Portals (대표성 기반 뉴스 추천 메커니즘이 온라인 뉴스 포탈의 독자 반응에 미치는 영향)

  • Lee, Un-Kon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.2
    • /
    • pp.1-22
    • /
    • 2016
  • News contents has been collected, selected, edited and sometimes distorted by the news recommendation mechanisms of online portals in nowadays. Prior studies had not confirmed the consensus of newsworthiness, and they had not tried to empirically validate the impacts of newsworthiness on audience reactions. This study challenged to summarize the concepts of newsworthiness and validate the impact of representativeness of both editor's and audience's perspective on audience reactions as perceived news quality, trust on news portal, perceived usefulness, service satisfaction, loyalty, continuous usage intention, and word-of-mouth intention by adopting the representativeness heuristics method and information adoption model. 357 valid data had been collected using a scenario survey method. Subjects in each groups are exposed by 3 news recommendation mechanisms: 1) the time-priority news exposure mechanism (control group), 2) the reference-score-based news recommendation mechanism (a single treatment group), and 3) the major-news-priority exposure mechanism sorting by the reference scores made by peer audiences (the mixed treatment group). Data had been analyzed by the MANOVA and PLS method. MANOVA results indicate that only mixed method of both editor and audience recommendation mechanisms impacts on perceived news quality and trust. PLS results indicate that perceived news quality and trust could significantly affect on the perceived usefulness, service satisfaction, loyalty, continuance usage, and word-of-mouth intention. This study would contributions to empathize the role of information technology in media industry, to conceptualize the news value in the balanced views of both editors and audiences, and to empirically validate the benefits of news recommendation mechanisms in academy. For practice, the results of this study suggest that online news portals would be better to make mixed news recommendation mechanisms to attract audiences.

MBTI-based Recommendation for Resource Collaboration System in IoT Environment

  • Park, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • In IoT(Internet of Things) environment, users want to receive customized service by users' personal device such as smart watch and pendant. To fulfill this requirement, the mobile device should support a lot of functions. However, the miniaturization of mobile devices is another requirement and has limitation such as tiny display. limited I/O, and less powerful processors. To solve this limitation problem and provide customized service to users, this paper proposes a collaboration system for sharing various computing resources. The paper also proposes the method for reasoning and recommending suitable resources to compose the user-requested service in small device with limited power on expected time. For this goal, our system adopts MBTI(Myers-Briggs Type Indicator) to analyzes user's behavior pattern and recommends personalized resources based on the result of the analyzation. The evaluation in this paper shows that our approach not only reduces recommendation time but also increases user satisfaction with the result of recommendation.

Recommendation Technique using Social Network in Internet of Things Environment (사물인터넷 환경에서 소셜 네트워크를 기반으로 한 정보 추천 기법)

  • Kim, Sungrim;Kwon, Joonhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • Recently, Internet of Things (IoT) have become popular for research and development in many areas. IoT makes a new intelligent network between things, between things and persons, and between persons themselves. Social network service technology is in its infancy, but, it has many benefits. Adjacent users in a social network tend to trust each other more than random pairs of users in the network. In this paper, we propose recommendation technique using social network in Internet of Things environment. We study previous researches about information recommendation, IoT, and social IoT. We proposed SIoT_P(Social IoT Prediction) using social relationships and item-based collaborative filtering. Also, we proposed SR(Social Relationship) using four social relationships (Ownership Object Relationship, Co-Location Object Relationship, Social Object Relationship, Parental Object Relationship). We describe a recommendation scenario using our proposed method.

Data Sparsity and Performance in Collaborative Filtering-based Recommendation

  • Kim Jong-Woo;Lee Hong-Joo
    • Management Science and Financial Engineering
    • /
    • v.11 no.3
    • /
    • pp.19-45
    • /
    • 2005
  • Collaborative filtering is one of the most common methods that e-commerce sites and Internet information services use to personalize recommendations. Collaborative filtering has the advantage of being able to use even sparse evaluation data to predict preference scores for new products. To date, however, no in-depth investigation has been conducted on how the data sparsity effect in customers' evaluation data affects collaborative filtering-based recommendation performance. In this study, we analyzed the sparsity effect and used a hybrid method based on customers' evaluations and purchases collected from an online bookstore. Results indicated that recommendation performance decreased monotonically as sparsity increased, and that performance was more sensitive to sparsity in evaluation data rather than in purchase data. Results also indicated that the hybrid use of two different types of data (customers' evaluations and purchases) helped to improve the recommendation performance when evaluation data were highly sparse.