• Title/Summary/Keyword: Recommendation Method

Search Result 976, Processing Time 0.024 seconds

An Online Review Mining Approach to a Recommendation System (고객 온라인 구매후기를 활용한 추천시스템 개발 및 적용)

  • Cho, Seung-Yean;Choi, Jee-Eun;Lee, Kyu-Hyun;Kim, Hee-Woong
    • Information Systems Review
    • /
    • v.17 no.3
    • /
    • pp.95-111
    • /
    • 2015
  • The recommendation system automatically provides the predicted items which are expected to be purchased by analyzing the previous customer behaviors. This recommendation system has been applied to many e-commerce businesses, and it is generating positive effects on user convenience as well as the company's revenue. However, there are several limitations of the existing recommendation systems. They do not reflect specific criteria for evaluating products or the factors that affect customer buying decisions. Thus, our research proposes a collaborative recommendation model algorithm that utilizes each customer's online product reviews. This study deploys topic modeling method for customer opinion mining. Also, it adopts a kernel-based machine learning concept by selecting kernels explaining individual similarities in accordance with customers' purchase history and online reviews. Our study further applies a multiple kernel learning algorithm to integrate the kernelsinto a combined model for predicting the product ratings, and it verifies its validity with a data set (including purchased item, product rating, and online review) of BestBuy, an online consumer electronics store. This study theoretically implicates by suggesting a new method for the online recommendation system, i.e., a collaborative recommendation method using topic modeling and kernel-based learning.

Recommendation using Service Ontology based Context Awareness Modeling (서비스 온톨로지 기반의 상황인식 모델링을 이용한 추천)

  • Ryu, Joong-Kyung;Chung, Kyung-Yong;Kim, Jong-Hun;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.22-30
    • /
    • 2011
  • In the IT convergence environment changed with not only the quality but also the material abundance, it is the most crucial factor for the strategy of personalized recommendation services to investigate the context information. In this paper, we proposed the recommendation using the service ontology based context awareness modeling. The proposed method establishes a data acquisition model based on the OSGi framework and develops a context information model based on ontology in order to perform the device environment between different kinds of systems. In addition, the context information will be extracted and classified for implementing the recommendation system used for the context information model. This study develops the ontology based context awareness model using the context information and applies it to the recommendation of the collaborative filtering. The context awareness model reflects the information that selects services according to the context using the Naive Bayes classifier and provides it to users. To evaluate the performance of the proposed method, we conducted sample T-tests so as to verify usefulness. This evaluation found that the difference of satisfaction by service was statistically meaningful, and showed high satisfaction.

Social Network based Sensibility Design Recommendation using {User - Associative Design} Matrix (소셜 네트워크 기반의 {사용자 - 연관 디자인} 행렬을 이용한 감성 디자인 추천)

  • Jung, Eun-Jin;Kim, Joo-Chang;Jung, Hoill;Chung, Kyungyong
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.313-318
    • /
    • 2016
  • The recommendation service is changing from client-server based internet service to social networking. Especially in recent years, it is serving recommendations with personalization to users through crowdsourcing and social networking. The social networking based systems can be classified depending on methods of providing recommendation services and purposes by using memory and model based collaborative filtering. In this study, we proposed the social network based sensibility design recommendation using associative user. The proposed method makes {user - associative design} matrix through the social network and recommends sensibility design using the memory based collaborative filtering. For the performance evaluation of the proposed method, recall and precision verification are conducted. F-measure based on recommendation of social networking is used for the verification of accuracy.

Levelized Information Retrieval Method in Context Awareness Environments (컨텍스트 인식 환경에서 레벨화된 정보 검색 기법)

  • Kim, Sung-Rim;Kwon, Joon-Hee
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.47-52
    • /
    • 2005
  • The context-aware retrieval method is one of the fundamental characteristics in ubiquitous computing. The essential aims of context-aware retrieval method are retrieving relevant information and delivering information quickly. We propose a new method that retrieves relevant information and delivers information quickly using characteristics of levelized contexts. We extract rules and recommendation information in the near future using context values and rules. Then we prefetch recommendation information in very near future using access score. Our method retrieves relevant information and deliver information quickly by storing only recommendation information to be needed in near future using the characteristics of levelized contexts.

A Group Modeling Strategy Considering Deviation of the User's Preference in Group Recommendation (그룹 추천에서 사용자 선호도의 편차를 고려한 그룹 모델링 전략)

  • Kim, HyungJin;Seo, Young-Duk;Baik, Doo-Kwon
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1144-1153
    • /
    • 2016
  • Group recommendation analyzes the characteristics and tendency of a group rather than an individual and provides relevant information for the members of the group. Existing group recommendation methods merely consider the average and frequency of a preference. However, if the users' preferences have large deviations, it is difficult to provide satisfactory results for all users in the group, although the average and frequency values are high. To solve these problems, we propose a method that considers not only the average of a preference but also the deviation. The proposed method provides recommendations with high average values and low deviations for the preference, so it reflects the tendency of all group members better than existing group recommendation methods. Through a comparative experiment, we prove that the proposed method has better performance than existing methods, and verify that it has high performance in groups with a large number of members as well as in small groups.

Design a Method Enhancing Recommendation Accuracy Using Trust Cluster from Large and Complex Information (대규모 복잡 정보에서 신뢰 클러스터를 이용한 추천 정확도 향상기법 설계)

  • Noh, Giseop;Oh, Hayoung;Lee, Jaehoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.17-25
    • /
    • 2018
  • Recently, with the development of ICT technology and the rapid spread of smart devices, a huge amount of information is being generated. The recommendation system has helped the informant to judge the information from the information overload, and it has become a solution for the information provider to increase the profit of the company and the publicity effect of the company. Recommendation systems can be implemented in various approaches, but social information is presented as a way to improve performance. However, no research has been done to utilize trust cluster information among users in the recommendation system. In this paper, we propose a method to improve the performance of the recommendation system by using the influence between the intra-cluster objects and the information between the trustor-trustee in the cluster generated in the online review. Experiments using the proposed method and real data have confirmed that the prediction accuracy is improved than the existing methods.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.

A Recommendation System Based on Customer Preference Analysis and Filter Management (고객 성향 분석과 필터 관리 기반 추천 시스템)

  • 이성구
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.592-600
    • /
    • 2004
  • A recommendation system, which is an application area of e-CRM in e-commerce environment, provides individualized goods recommendation service that meets the demand of individual users. In general, existing recommendation systems require extensive historic user information in application domains. However, the method of recommendation based on static historic user information needs to respond flexibly to users'demand that changes rapidly and sensitively over time and in domains including a variety of users. In addition, it is difficult to recommend for new users who are not fall into any of existing domains. To overcome such limitations and provide flexible recommendation service, this study designed and implemented CPAR (Customer Preference Analysis Recommender) system that supports customer preference analysis and filter management. The filtering management capacity of the present system eases the necessity of extensive information about new users. In addition, CPAR system was implemented in XML-based wireless Internet environment for recommendation service independent from platforms and not limited by time and place.

  • PDF

Enhanced Recommendation Algorithm using Semantic Collaborative Filtering: E-commerce Portal (전자상거래 포탈을 위한 시맨틱 협업 필터링을 이용한 확장된 추천 알고리즘)

  • Ahmed, Shohel;Kim, Jong-Woo;Kang, Sang-Gil
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.79-98
    • /
    • 2011
  • This paper proposes a semantic recommendation technique for a personalized e-commerce portal. Semantic recommendation is achieved by utilizing the attributes of products. The semantic similarity of the products is merged with the rating information of the products to provide an accurate recommendation. The recommendation technique also analyzes various attitudes of the customer to evaluate the implicit rating of products. Attitudes are classifies into three types such as "purchasing product", "adding product to shopping cart", and "viewing the product information." We implicitly track customer attitude to estimate the rating of products for recommending products. Also we implement a session validation process to identify the valid sessions that are highly important for giving an accurate recommendation. Our recommendation technique shows a high degree of accuracy as we use age groupings of customers with similar preferences. The experimental section shows that our proposed recommendation method outperforms well known collaborative filtering methods not only for the existing customer, but also for the new user with no previous purchase record.

Development of Personalized Learning Course Recommendation Model for ITS (ITS를 위한 개인화 학습코스 추천 모델 개발)

  • Han, Ji-Won;Jo, Jae-Choon;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.21-28
    • /
    • 2018
  • To help users who are experiencing difficulties finding the right learning course corresponding to their level of proficiency, we developed a recommendation model for personalized learning course for Intelligence Tutoring System(ITS). The Personalized Learning Course Recommendation model for ITS analyzes the learner profile and extracts the keyword by calculating the weight of each word. The similarity of vector between extracted words is measured through the cosine similarity method. Finally, the three courses of top similarity are recommended for learners. To analyze the effects of the recommendation model, we applied the recommendation model to the Women's ability development center. And mean, standard deviation, skewness, and kurtosis values of question items were calculated through the satisfaction survey. The results of the experiment showed high satisfaction levels in accuracy, novelty, self-reference and usefulness, which proved the effectiveness of the recommendation model. This study is meaningful in the sense that it suggested a learner-centered recommendation system based on machine learning, which has not been researched enough both in domestic, foreign domains.