• Title/Summary/Keyword: Recombinant vaccinia virus

Search Result 17, Processing Time 0.019 seconds

Expression of Cholesteryl Ester Transfer Protein cDNA using Recombinant Vaccinia Viruses

  • Jang, Moon-Kyoo;Ahn, Byung-Yoon;Huh, Tae-Lin;Bok, Song-Hae;Park, Yong-Bok
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.216-220
    • /
    • 1995
  • cDNA for human cholesteryl ester transfer protein (CETP), a potent atherogenic plasma protein that redistributes the neutral lipids among lipoproteins, was expressed in recombinant vaccinia virus-infected cells (CV-1). Two insertion vectors regulated by different promoters were constructed. The vectors were introduced into human thymidine kinase-negative ($TK^-$) 1438 cells infected with wild-type vaccinia virus (WR strain). Recombinant viruses were selected with 5-bromodeoxyuridine (BUdR) and X-gal and identified with DNA dot blot analysis (vSC11-CETP and vTM1-CETP). The CETP cDNA insert in the recombinant vaccinia virus genome was identified by Southern blot analysis. Transcription of CETP cDNA in CV-1 cells infected with recombinant vaccinia virus was monitored by Northern blot analysis using the CETP cDNA as a probe. Positive signals were detected at 1.8 kb in cells infected with vSC11-CETP and at 2.3 kb in cells infected with vTM1-CETP. The recombinant vaccinia virus-infected CV-1 cells were shown to produce functional CETP when the culture medium was subjected to the CETP assay.

  • PDF

Expression of Hepatitis B Virus Antigen by Recombinant Vaccinia Virus VV-$\textrm{HBV}_{L}$

  • Lee, Yun-Kyung;Yu, Jung-An;Ahn, Byung-Yoon;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.82-82
    • /
    • 1997
  • The hepatitis B virus(HBV) is a small, enveloped virus with a circular, double-stranded DNA genome. HBV causes active and chronic hepatitis worldwide, including Korea, and is considered to be a major factor for liver cirrhosis and hepatocellular carcinoma. In contrast to the wealth of knowledge on the gene structure and expressional regulation, immunological and pathological mechanisms for HBV-induced hepatocellular injury are not well known. In the present study, vaccinia virus which has been demonstrated to be a useful eukaryotic expression vector was used to clone the gene for HBV surface antigen, L(S+preS2+preS1). The recombinant vaccinia virus vector, pMJ-L, which contains L surface antigen gene of adr-type HBV was constructed, and subseouently used for making recombinant vaccinia virus VV-$\textrm{HBV}_{L}$. Expression of the HBV antigen was examined by immunofluorescent antibody (IFA) test using mouse monoclonal anti-hepatitis B surface antigen. HBsAg was detected in the recombinant virus indicating that the VV-$\textrm{HBV}_{L}$ expressed S antigen successfully. The HBV-Vaccinia Virus recombinant obtained in this study is currently being used for studying the immunological aspects of HBV infection.

  • PDF

Effective Antitumor Activity of a Recombinant Vaccinia Virus Expressing Murine Interleukin 4 (인터루킨-4를 발현하는 재조합 백시니아 바이러스에 의한 암성장의 억제)

  • Yoon, Kee-Jung;Jin, Ning-Yi;Kim, Sun-Young
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • Vaccinia virus is the prototype orthopoxvirus that has been used as a vaccine strain for small pox. This virus has been used to express a variety of cellular and viral genes in mammalian cells at high levels. Interleukin-4 (IL-4) has been found to stimulate the proliferation of T cells and enhance the cytolytic activity of cytotoxic T lymphocytes. To test the immunotherapeutic potential of IL-4 delivered in vivo by poxvirus, a recombinant vaccinia virus expressing the murine IL-4 gene (RVVmIL-4) was constructed. A high level of IL-4 production was confirmed by infecting HeLa cells and measuring IL-4 in cell culture supernatant by ELISA. As a tumor model, two cell lines were used; the murine T leukemic line P388 and the murine breast cancer line TS/A. CDF1 mice were intraperitoneally inoculated with $1\;{\times}\;10^5$ cells of P388. Mice were injected at the same site with $5\;{\times}\;10^5\;PFU$ of recombinant vaccinia virus; first, 3 days after the injection of tumor cells and thereafter once every week for 3 weeks. Intraperitoneal injections of RVVmIL-4 significantly prolonged the survival time of mice inoculated with tumor cells. All mice injected with RVVmIL-4 remained alive for 30 days after the postinoculation of tumor cells, while 100% and 70% of the animals injected with saline or wild type vaccinia virus died, respectively. In another tumor model using TS/A, tumor was established by subcutaneously inoculating $2{\times}10^5$ tumor cells to BALB/c mice. After tumor formation was confirmed on day 4 in all mice, $5\;{\times}\;10^6\;PFU$ of RVVmIL-4 was inoculated subcutaneously three times, once every week for 3 weeks. The TS/A tumor was eradicated in two of the nine mice. Seven of the nine mice treated with RVVmIL-4 developed a tumor, but tumor growth was significantly delayed compared to those treated with saline or wild type vaccinia virus. These results indicate that recombinant vaccinia viruses may be used as a convenient tool for delivering immunomodulator genes to a variety of tumors.

  • PDF

Optimization of Host Animal Cell Culture Conditions to Produce Protein Using Recombinant Vaccinia Virus (재조합 백시니아 바이러스를 이용한 단백질 생산을 위한 숙주 동물세포의 배양 조건 최적화)

  • 이두훈;박정극
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.438-444
    • /
    • 1996
  • Using recombinant Vaccinia virus(vSC8) that express ${\beta}$-galactosidase, a model heterologous protein, conditions for virus and protein production were investigated in tissue culture flask. As host animal cells HeLa and HeLa S3 were used. It was demonstrated that cells infected during the exponential growth phase gave higher protein yield than those infected during the stationary growth phase and calf serum concentration after virus infection did not significantly alter protein yield. Pretreatment of cell layer with hypotonic solution enhanced the virus infectivity. Optimum cell growth and recombinant protein production was achieved at $37^{\circ}C$. But, during 2 hours of virus infection period incubation temperature must be lowered to 20∼$30^{\circ}C$ for maximum recombinant protein yield. To enhance virus replication, the effects of adrenal glucocorticoid hormone (Dexamethasone) and silkworm hemolymph were evaluated. Only dexamethasone increased about 20% of ${\beta}$-galactosidase yield in HeLa S3 cells when added with 10-7∼10-5M concentration 24 hours before infection.

  • PDF

New trends of vaccine development: Recombinant vaccinia viruses (expression vectors) as vaccines (Vaccine개발(開發)의 새로운 동향(動向) : Vaccinia virus를 발견(發見) vector로 이용하는 재조합(再組合) 생(生)vaccine의 작성(作成))

  • Kim, Uh-ho
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.3
    • /
    • pp.407-416
    • /
    • 1989
  • The prospect of live vaccines consisting of genetically modified vaccinia virus expressing foreign genes is exciting, but important issues concerning safety and efficacy need to resolved. Vaccinia virus (VV) is an efficient expression vector with broad host range infectivity and large DNA capacity. This vector has been particularly useful for identifying target antigens for humoral and cell-mediated immunity. The WHO smallpox eradication program, involving the extensive use of VV vaccines, resulted in the late 1970s in the elimination of one of the world's most feared diseases. This achievement is a triumph for preventive medicine and for international collaboration in public health. In 1980, WHO recommended that the routine use of smallpox vaccine should be stopped. Against this background, the prospect of li ve vaccines consisting of genetically modified VV expressing foreign antigens arising from the work of Moss, and Paoletti and their colleagues in 1982 has been greeted with enthusiasm. These investigators have shown that genes coding for immunogenic proteins can be inserted into VV DNA without impairing the ability of the virus to grow in cell culture. Moreover experimental animals infected with VV recombinants containing genes coding for a variety of immunizing proteins have been shown to be protected against challenge infection with the corresponding infectious agent. In this communication, I describe current progress in the construction of a novel plasmid vector that facilitate the insertion and expression of foreign genes in VV as well as the selection of recombinants.

  • PDF

CD8+ T Cell-mediated Immunity Induced by Heterologous Prime-boost Vaccination Based on DNA Vaccine and Recombinant Vaccinia Virus Expressing Epitope (Epitope발현 DNA Vaccine과 Recombinant Vaccinia Virus를 이용한 Heterologous Prime-boost Vaccination에 의하여 유도되는 CD8+ T 세포 매개성 면역)

  • Park, Seong-Ok;Yoon, Hyun-A;Aleyas, Abi George;Lee, John-Hwa;Chae, Joon-Seok;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.89-98
    • /
    • 2005
  • Background: DNA vaccination represents an anticipated approach for the control of numerous infectious diseases. Used alone, however, DNA vaccine is weak immunogen inferior to viral vectors. In recent, heterologous prime-boost vaccination leads DNA vaccines to practical reality. Methods: We assessed prime-boost immunization strategies with a DNA vaccine (minigene, $gB_{498-505}$ DNA) and recombinant vaccinia virus $(vvgB_{498-505})$ expressing epitope $gB_{498-505}$ (SSIEF ARL) of CD8+ T cells specific for glycoprotein B (gB) of herpes simplex virus (HSV). Animals were immunized primarily with $gB_{498-505}$ epitope-expressing DNA vaccine/recombinant vaccinia virus and boosted with alternative vaccine type expressing entire Ag. Results: In prime-boost protocols using vvgBw (recombinant vaccinia virus expressing entire Ag) and $vvgB_{498-505}$, CD8+ T cell-mediated immunity was induced maximally at both acute and memory stages if primed with vvgBw and boosted with $vvgB_{498-505}$ as evaluated by CTL activity, intracellular IFN-staining, and MHC class I tetramer staining. Similarly $gB_{498-505}$ DNA prime-gBw DNA (DNA vaccine expressing entire Ag) boost immunization elicited the strongest CD8+ T cell responses in protocols based on DNA vaccine. However, the level of CD8+ T cell-mediated immunity induced with prime-boost vaccination using DNA vaccine expressing epitope or entire Ag was inferior to those based on vvgBw and $vvgB_{498-505}$. Of particular interest CD8+ T cell-mediated immunity was optimally induced when $vvgB_{498-505}$ was used to prime and gB DNA was used as alternative boost. Especially CD7+ T cell responses induced by such protocol was longer lasted than other protocols. Conclusion: These facts direct to search for the effective strategy to induce optimal CD8+ T cell-mediated immunity against cancer and viral infection.

Oncolytic Vaccinia Virus Expressing 4-1BBL Inhibits Tumor Growth by Increasing CD8+ T Cells in B16F10 Tumor Model

  • Lee, Na-Kyung;Kim, Hong-Sung
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.210-217
    • /
    • 2012
  • Oncolytic viral vectors have shown good candidates for cancer treatment but have many limitations. To improve the therapeutic potential of oncolytic vaccinia virus, we developed a recombinant vaccinia virus expressing the 4-1BBL co-stimulatory molecule or CCL21. 4-1BBL and CCL21 expression was identified by FACS analysis and immunoblotting. rV-4-1BBL vaccination shows significant tumor regression compared to rV-LacZ, but rV-CCL21 shows rapid tumor growth compared to rV-LacZ in the poorly immunogenic B16 murine melanoma model. 4-1BBL expression resulted in the increase of the number of CD8+ T cells and especially the increase of effector (CD62L-CD44+) CD8+ T cells. These data suggest 4-1BBL may be the potential target for enhancement of tumor immunotherapy.

Distinct Humoral and Cellular Immunity Induced by Alternating Prime-boost Vaccination Using Plasmid DNA and Live Viral Vector Vaccines Expressing the E Protein of Dengue Virus Type 2

  • George, Junu A.;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.268-280
    • /
    • 2011
  • Background: Dengue virus, which belongs to the Flavivirus genus of the Flaviviridae family, causes fatal dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) with infection risk of 2.5 billion people worldwide. However, approved vaccines are still not available. Here, we explored the immune responses induced by alternating prime-boost vaccination using DNA vaccine, adenovirus, and vaccinia virus expressing E protein of dengue virus type 2 (DenV2). Methods: Following immunization with DNA vaccine (pDE), adenovirus (rAd-E), and/or vaccinia virus (VV-E) expressing E protein, E protein-specific IgG and its isotypes were determined by conventional ELISA. Intracellular CD154 and cytokine staining was used for enumerating CD4+ T cells specific for E protein. E protein-specific CD8+ T cell responses were evaluated by in vivo CTL killing activity and intracellular IFN-${\gamma}$ staining. Results: Among three constructs, VV-E induced the most potent IgG responses, Th1-type cytokine production by stimulated CD4+ T cells, and the CD8+ T cell response. Furthermore, when the three constructs were used for alternating prime-boost vaccination, the results revealed a different pattern of CD4+ and CD8+ T cell responses. i) Priming with VV-E induced higher E-specific IgG level but it was decreased rapidly. ii) Strong CD8+ T cell responses specific for E protein were induced when VV-E was used for the priming step, and such CD8+ T cell responses were significantly boosted with pDE. iii) Priming with rAd-E induced stronger CD4+ T cell responses which subsequently boosted with pDE to a greater extent than VV-E and rAd-E. Conclusion: These results indicate that priming with live viral vector vaccines could induce different patterns of E protein-specific CD4+ and CD8+ T cell responses which were significantly enhanced by booster vaccination with the DNA vaccine. Therefore, our observation will provide valuable information for the establishment of optimal prime-boost vaccination against DenV.

IN VITRO DRUG METABOLISM BY A HUMAN P450 EXPRESSION SYSTEM USING VACCINIA VIRUS.

  • S.Ono;Ha, T.tanaka;H.Hotta;M.Tsutsui;F.J.Gonzalez;T.Aoyama;T.Satoh
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.153-163
    • /
    • 1994
  • P450s are a superfamily of heme-containing monooxygenases and important in the metabolism of numerous physiological substrates and foreign compounds. It has been established that tilers are at least 30 distinct human isoforms of P450. Four families containing numerous individual P450s are mainly responsible for metabolizing foreign compounds, A cDNA expression system in which individual human P450s are synthesized in cultured human hepatoma (Hep G2) cells infected with a recombinant vaccinia virus containing human P450 cDNA has been constructed.

  • PDF

Bead-to-Bead Cell Transfer by Induction of Detachment of Anchorage Dependent HeLa Cells Grown on Macroporous Microcarriers (부착성 HeLa 세포의 탈리 유도에 의한 다공성 미립담체의 담체간 전이 배양)

  • 이두훈;박정극
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 1998
  • Using a cellulose macroporous microcarrier, HeLa cells were cultivated in 100mL spinner flask(Bellco Co., USA) and confluent cell laden microcarriers were subcultured by bead-to-bead cell transfer method. In macroporous mcirocarrier-HeLa system viable suspended cells played an important role in bead-to-bead cell transfer and that could be increased by use of RPMI-1640, a calcium-ion-reduced-media and high speed agitation. Successful bead-to-bead cell transfers were performed continuously three time in spinner flask. We applied this technique to produce recombinant Vaccinia virus which express $\beta$-galactosidase. Recombinant protein yield of bead-to-bead transferred culture was comparable to conventional microcarrier cultures that were inoculated by cells detached from T-flask. Although trypsinization is a useful method for subculturing microcarriers in some cases, that process adds quality control problem and handling steps to large scale cell production. There fore, bead-to-bead cell transfer technique offers another convenient and efficient scale-up method for continuous microcarrier cultures.

  • PDF