• Title/Summary/Keyword: Recombinant vaccine

Search Result 193, Processing Time 0.024 seconds

Sequence analysis and expression of groE gene encoding heat shock proteins of Brucella abortus isolates (Brucella abortus 국내 분리주의 Heat Shock Protein 암호 groE 유전자의 염기서열 분석과 발현)

  • Kim, Tae-Yong;Kim, Ji-Young;Chang, Kyung-Soo;Kim, Myung-Cheol;Park, Chang-Sik;Han, Hong-Ryul;Jun, Moo-Hyung
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • GroE that is a heat shock protein composed of GroEL and GroES is known as an immunodominant target of both the humoral and cellular immune responses in bovine brucellosis. This study was carried out to characterize groE gene encoding heat shock proteins of B. abortus isolated in Korea and to evaluate the immunogenicity of the GroE protein expressed in E. coli system. In PCR the specific signals with the size of 2,077 bp were detected in five strains isolated from the mammary lymphnodes of the dairy cattle that were serologically positive and the reference strains. In comparison of the sequences of nucleotides and amino acids among the strains, GroES showed 100% identity in both sequences. GroEL was evaluated 99.0~99.9% in nucleotides and 98.0~100% homology in amino acids. The groE gene including groES and groEL was inserted into pET29a vector and constructed pET29a-GroE recombinant plasmids. The inserted groE was confirmed by digestion with Nco1 and EcoR1 endonucleases and nucleotide sequencing. E. coli BL (DE3) was transformed with pET29a-GroE, named as E. coli BL (DE3)/pET29a-GroE. In SDS-PAGE, it was evident that the recombinant plasmid effectively expressed the polypeptides for GroES (10 kDa) and GroEL (60 kDa) in 0.5, 1 and 2 hours after IPTG induction. The immuno-reactivity of the expressed proteins were proved in mouse inoculation and Western blot analysis.

Genetic Variations of Outer Membrane Protein Genes of Vibrio harveyi Isolated in Korea and Immunogenicity of OmpW in Olive Flounder, Paralichthys olivaceus (한국에서 분리된 Vibrio harveyi 외막단백질의 유전적 차이와 넙치(Paralichthys olivaceus)에 대한 OmpW의 면역원성 분석)

  • KIM, Myoung-Sug;JIN, Ji-Woong;JUNG, Sung-Hee;SEO, Jung-Soo;HONG, Suhee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1508-1521
    • /
    • 2015
  • Vibrio harveyi is a pathogenic marine bacterium causing systemic symptoms resulting in mass mortalities in fishes and shrimps in aquaculture. Outer membrane proteins(OMPs) are related to the pathogenicity and thus good targets for diagnosis and vaccination for Gram negative bacteria. Recently vaccination strategies using the OMPs have been suggested to control vibriosis in several fish species. In this study, we have isolated V. harveyi from diseased marine fishes from different regions of Korea and investigated genetic variations of four OMP genes including OmpK, OmpU, OmpV and OmpW. Consequently, OmpK and U genes could be divided into 3 subgroups of type I, II, III and type A, B, C, respectively, without any correlation with geographical regions and species while OmpV and W were highly homologous. OmpW gene of V. harveyi FP4138 was fully sequenced and predicted the deduced amino acid sequence to form ${\beta}-barrel$ with hydrophobic channel. Indeed, the immunogenicity of recombinant OmpW produced in Escherichia coli was assessed by vaccinating flounder. As a result, the high antibody response with antibody titer of $4.2{\pm}0.7$ and protection with relative percent survival of 60% against artificial infection of V. harveyi were demonstrated. This result indicates that OmpW is a virulence related factor and it can be a vaccine candidate to prevent a high mortality caused by V. harveyi infection in olive flounder, Paralichthys olivaceus.

Suspension culture of anchorage-dependent cells in serum-free medium with biodegradable polymer nanospheres

  • Ryu, Ju-Hee;Choi, Cha-Yong;Kim, Byung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.171-173
    • /
    • 2003
  • Suspension culture in serum-free medium is important for the efficient large-scale culture of anchorage-dependent cells that are utilized to produce therapeutic recombinant protein(e.g., insulin, antibody, vaccine) and virus vector for therapeutic gene transfer. We developed a novel method for the suspension culture of anchorage-dependent animal cells in serum-free medium using biodegradable polymer nanospheres in this study. Poly(lactic-co-glycolic acid) (PLGA) polymer nanospheres (433nm in average diameter) were used to the culture of human embryonic kidney 293 cells in serum-free medium in stirred suspension bioreactors. The use of PLGA nanospheres promoted the aggregate formation and cell growth (3.8-fold versus 1.8-fold growth), compared to culture without nanospheres. Adaptation of the anchorage-dependent cells to suspension culture or serum-free medium is time-consuming and costly. In contrast, the culture method developed in our study does not require the adaptation process. This method may be useful for the large-scale suspension culture of various types of anchorage-dependent animal cells in serum-free medium.

  • PDF

Characterization of Surface Layer Proteins in Lactobacillus crispatus Isolate ZJ001

  • Chen, Xueyan;Chen, Yang;Li, Xiaoliang;Chen, Ning;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1176-1183
    • /
    • 2009
  • Lactobacillus crispatus (L. crispatus) ZJ001 is highly adhesive to epithelial cells and expresses S-layer proteins. In this study, S-S-layer layer genes were sequenced and expressed in E. coli to characterize the function of proteins with this particular strain. L. crispatus ZJ001 harbored two S-layer genes slpA and slpB, and only slpA gene was expressed in the bacterium, as revealed by RT-PCR and immunoassays. The mature SlpA showed 47% amino acid sequence identity to SlpB. The SlpA and SlpB of L. crispatus ZJ001 were highly homologous at the C-terminal region to other Lactobacillus S-layer proteins, but were substantially variable at N-terminal and middle regions. Electron microscopic analysis indicated that His-slpA expressed in E. coli was able to form a sheet-like structure similar to the natural S-layer, but His-slpB formed as disc-like structures. In the cell binding experiments, HeLa cells were able to bind to both recombinant His-slpA and His-slpB proteins to the extent similar to the natural S-layer. The cell binding domains remain mostly in the N-terminal regions in SlpA and SlpB, as shown by high binding of truncated peptides SlpA2-228 and SlpB2-249. Our results indicated that SlpA was active and high binding to HeLa cells, and that the slpA gene could be targeted to display foreign proteins on the bacterial surface of ZJ001 as a potential mucosal vaccine vector.

Expression of Rotavirus Capsid Proteins VP6 and VP7 in Mammalian Cells Using Semliki Forest Virus-Based Expression System

  • Choi, Eun-Ah;Kim, Eun;Oh, Yoon-I;Shin, Kwang-Soon;Kim, Hyun-Soo;Kim, Chul-Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • Rotaviruses are the world-wide leading causative agents of severe dehydrating gastroenteritis in young children and animals. The outer capsid glycoprotein VP7 and inner capsid glycoprotein VP6 of rotaviruses are highly antigenic and immunogenic. An SFV-based expression system has recently emerged as a useful tool for heterologous protein production in mammalian cells, exhibiting a much more efficient performance compared to other gene expression systems. Accordingly, the current study adopted an SFV-based expression system to express the VP7 of a group A human rotavirus from a Korean isolate, and the VP6 of a group B bovine rotavirus from a Korean isolate, in mammalian cells. The genes of the VP6 and VP7 were inserted into the SFV expression vector pSFV-1. The RNA was transcribed in vitro from pSFV-VP6 and pSFV-VP7 using SP6 polymerase. Each RNA was then electroporated into BHK-21 cells along with pSFV-helper RNA containing the structural protein gene without the packaging signal. The expression of VP6 and VP7 in the cytoplasm was then detected by immunocytochemistry. The recombinant virus was harvested by ultracentrifugation and examined under electron microscopy. After infecting BHK-21 cells with the defective viruses, the expressed proteins were separated by SDS-PAGE and analyzed by a Western blot. The results indicate that an SFV-based expression system fur the VP6 and VP7 of rotaviruses is an efficient tool for developing a diagnostic kit and/or preventive vaccine.

Enhanced CEA-specific Immune Responses by Tat-LLO Fusion Protein (Tat-LLO 융합 단백질에 의한 CEA 특이 항종양 면역 반응의 증가)

  • Yi, Soon-Aei;Sohn, Hyun-Jung;Kim, Chang-Hyun;Park, Mi-Young;Oh, Seong-Taek;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.172-178
    • /
    • 2005
  • Background: Carcinoembryonic antigen (CEA) is well-known soluble tumor marker frequently detectable in peripheral blood of carcinoma patients and considered as good target for antigen-specific immunotherapy. However, it is known that the induction of immune response to CEA is very difficult because CEA is a self-antigen expressed in fetal cells and weakly expressed in normal colorectal epithelial cells. To enhance anti-tumor immunity specific for CEA, recombinant CEA protein was modified using listeriolysin O (LLO) for endosomal lysis and trans activator of transcription (Tat) domain for transducing extracellular proteins into cytoplasm. Methods: After immunization using dendritic cells pulsed with Tat-CEA, both Tat-CEA and LLO, and both Tat-CEA and Tat-LLO, antibody titer to CEA and LLO, cytotoxic T lymphocyte activity and the frequency of IFN-${\gamma}$ producing T lymphocytes were measured. Results: Immunization using DC pulsed with both Tat-CEA and Tat-LLO protein showed the increasement of production of CEA-specific antibody in serum, cytotoxic T lymphocyte activity, the frequency of IFN-${\gamma}$ secreting T cells, compared with DC pulsed with both Tat-CEA and LLO. Furthermore the ratio of CD8+T cell to $CD4^+$ cell among CEA-specific T cells was increased in group pulsed with both Tat-CEA and Tat-LLO. Conclusion: These results suggested that DC vaccine using Tat-LLO could be used for the development of effective immunotherapy for the treatment of tumor.

Production and diagnostic application of monoclonal antibodies against infectious bursal disease virus (IBDV에 대한 단크론항체 생산 및 진단적 응용)

  • Ryu, Min-Sang;Song, Yoon-Ki;Lee, Seung-Chul;Mo, In-Pil;Kang, Shien-Young
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.1
    • /
    • pp.5-12
    • /
    • 2011
  • Infectious bursal disease (IBD) caused by infectious bursal disease virus (IBDV) is a highly contagious viral disease in chicken. It causes heavy economic loss by immune suppression and high mortality. The IBDV, designated Avibirnavirus in the Family Birnaviridae, has a double-stranded RNA genome formed by two segments, segment A and segment B. Segment A encodes a 108 KDa polypeptide that is self-cleaved to produce pVP2, VP3 and VP4, and later pVP2 is cleaved to VP2. The VP2 contains the antigenic regions responsible for elicitation of neutralizing antibodies and VP3 is a major immunogenic protein of IBDV. In this study, monoclonal antibodies (MAbs) specific for IBDV were produced and characterized. All 15 MAbs were specific for IBDV and did not react with other viruses used in this study. The protein specificity of MAbs was determined by comparing the reactivity patterns of each MAb with IBDV VP2 and VP234 recombinant baculoviruses and Western blot analysis. As a result, 7 MAbs (1F5, 2C8, 2F4, 3C7, 4C3, 6F11, 6G5) and 5 MAbs (2A4, 2G2, 3F5, 3G2, 4F10) were specific for VP2 and VP3, respectively. The protein specificity of 3 MAbs (2B8, 3F7, 3F8) were not determined. Five (2C8, 2F4, 4C3, 6F11, 6G5) of the VP2-specific MAbs had a neutralizing activity against IBDV. Some MAbs reacted with IBDV-infected bursa of Fabricius by indirect fluorescence antibody (IFA) and immunohistochemistry (IHC) assay. The MAbs produced in this study would be used for diagnostic reagents for the detection of IBDV infection.

Expression of porcine reproductive and respiratory syndrome virus (PRRSV) ORF7 gene and monoclonal antibody production (돼지생식기호흡기증후군바이러스 ORF7 유전자 발현 및 단크론항체 생산)

  • Lee, Seung-Chul;Park, Ga-Hye;Lee, Kyeong-Won;Ryu, Min-Sang;Kang, Shien-Young
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.3
    • /
    • pp.143-150
    • /
    • 2014
  • Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiological agent of PRRS characterized by reproductive losses in sows and respiratory disorders in piglets. The PRRSV is a small enveloped virus containing a positive-sense, single-stranded RNA genome and divided into two genotype, type 1 (European) and type 2 (North American), respectively, by nucleotide identity. In this study, ORF7 gene of the type 1 and type 2 PRRSV was cloned and expressed in Baculovirus expression system. Also, monoclonal antibodies (MAbs) against ORF7 were produced and characterized. The expressed ORF7 proteins in the recombinant virus were confirmed by indirect fluorescence antibody (IFA) test using His6 and PRRSV-specific antiserum. A total of eight MAbs were produced and characterized. One (3G12) MAb was type 1 PRRSV ORF7-specific and two (6B10 and 16H8) were type 2 PRRSV ORF7-specific. Other five (1A1, 2A4, 4B4, 12C4 and 13F11) MAbs reacted with both type 1 and type 2 PRRSV. Some PRRSV ORF7-specific MAbs recognized the porcine tissues infected with PRRSV by IFA or immunohistochemistry (IHC) assay. From this experiment, it was confirmed that MAbs produced in this study were PRRSV ORF7-specific and could be used as reliable reagents for type 1/type 2 PRRSV detection.

Analysis of Immune Responses Against Nucleocapsid Protein of the Hantaan Virus Elicited by Virus Infection or DNA Vaccination

  • Woo Gyu-Jin;Chun Eun-Young;Kim Keun Hee;Kim Wankee
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.537-545
    • /
    • 2005
  • Even though neutralizing antibodies against the Hantaan virus (HTNV) has been proven to be critical against viral infections, the cellular immune responses to HTNV are also assumed to be important for viral clearance. In this report, we have examined the cellular and humoral immune responses against the HTNV nucleocapsid protein (NP) elicited by virus infection or DNA vaccination. To examine the cellular immune response against HTNV NP, we used $H-2K^b$ restricted T-cell epitopes of NP. The NP-specific $CD8^+$ T cell response was analyzed using a $^{51}Cr-release$ assay, intracellular cytokine staining assay, enzyme-linked immunospot assay and tetramer binding assay in C57BL/6 mice infected with HTNV. Using these methods, we found that HTNV infection elicited a strong NP-specific $CD8^+$ T cell response at eight days after infection. We also found that several different methods to check the NP-specific $CD8^+$ T cell response showed a very high correlation among analysis. In the case of DNA vaccination by plasmid encoding nucleocapsid gene, the NP-specific antibody response was elicited $2\~4$ weeks after immunization and maximized at $6\~8$ weeks. NP-specific $CD8^+$ T cell response reached its peak 3 weeks after immunization. In a challenge test with the recombinant vaccinia virus expressing NP (rVV-HTNV-N), the rVV-HTNV-N titers in DNA vaccinated mice were decreased about 100-fold compared to the negative control mice.

Quantitative Assay of Recombinant Hepatitis B Surface Antigen by Using Surface Plasmon Resonance Biosensor (Surface plasmon resonance 바이오센서를 이용한 재조합 B형 간염 표면항원의 정량분석)

  • Lee, E. K.;Ahn, S. J.;Yoo, C. H.;Ryu, K.;Jeon, J. Y.;Lee, H. I.;Choi, S. C.;Lee, Y. S.
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.20-25
    • /
    • 2002
  • We performed a basic experiment for rapid, on-line, real-time measurement of HBsAg by using a surface plasmon resonance biosensor to quantify the recognition and interaction of biomolecules. We immobilized the anti-HBsAg polyclonal antibody to the dextran layer on a CM5 chip surface which was pre-activated by N-hydroxysuccinimide for amine coupling. The binding of the HBsAg to the immobilized antibody was measured by the mass increase detected by the change in the SPR signal. The binding characteristics between HBsAg and its antibody followed typical monolayer adsorption isotherm. When the entire immobilized antibody was interacted, there was no additional, non-specific binding observed, which suggested the biointeraction was very specific as expected and independent of the ligand density. No significant steric hindrance was observed at 17.6 nm/$mm^2$ immobilization density. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the chip surface was linear up to ca. $40\mu\textrm{g}$/mL, which is much wider than that of the ELISA method. It appeared the antigen-antibody binding was increased as the immobilized ligand density increased, but verification is warranted. This study showed the potential of this biosensor-based method as a rapid, simple, multi-sample, on-line assay. Once properly validated, it can serve as a more powerful method for HBsAg quantification replacing the current ELISA method.