• Title/Summary/Keyword: Recombinant protein expression

Search Result 928, Processing Time 0.037 seconds

A novel technique for recombinant protein expression in duckweed (Spirodela polyrhiza) turions

  • Chanroj, Salil;Jaiprasert, Aornpilin;Issaro, Nipatha
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.156-164
    • /
    • 2021
  • Spirodela polyrhiza, from the Lemnaceae family, are small aquatic plants that offer an alternative plant-based system for the expression of recombinant proteins. However, no turion transformation protocol has been established in this species. In this study, we exploited a pB7YWG2 vector harboring the eYFP gene that encodes enhanced yellow fluorescent protein (eYFP), which has been extensively used as a reporter and marker to visualize recombinant protein localization in plants. We adopted Agrobacterium tumefaciens-mediated turion transformation via vacuum infiltration to deliver the eYFP gene to turions, special vegetative forms produced by duckweeds to endure harsh conditions. Transgenic turions regenerated several duckweed fronds that exhibited yellow fluorescent emissions under a fluorescence microscope. Western blotting verified the expression of the eYFP protein. To the best of our knowledge, this is the first report of an efficient protocol for generating transgenic S. polyrhiza expressing eYFP via Agrobacterium tumefaciens-mediated turion transformation. The ability of turions to withstand harsh conditions increases the portability and versatility of transgenic duckweeds, favoring their use in the further development of therapeutic compounds in plants.

Expression of Recombinant Human Stem Cell Factor (hSCF) Protein using Bombyx mori Protein Disulfide Isomerase (bPDI)

  • Kim, Sung-Wan;Yun, Eun-Young;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Lee, Kwang-Gill;Kwon, O-Yu;Goo, Tae-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.2
    • /
    • pp.151-155
    • /
    • 2010
  • Protein disulfide isomerase (PDI) catalyzes the oxidation of disulfides and the isomerizatiob of incorrect disulfides in new polypeptides during folding in the oxidizing environment of the endoplasmic reticulum (ER). To increase recombinant protein hSCF (human stem cell factor) production, we have developed expression system using the Bombyx mori PDI (bPDI) as a fusion partner. bPDI gene fusion was found to improve the production of recombinant hSCFs. Thus, we conclude that bPDI gene fusion will be very useful for the large-scale production of biologically active recombinant proteins.

A Novel Possibility of Recombinant Baculovirus Vector (재조합 베큘로바이러스 벡터의 새로운 가능성)

  • Kim, Ji-Young;Kim, Hyun Joo;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.838-841
    • /
    • 2015
  • Recombinant baculovirus vector is composed of genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). This recombinant baculovirus vector was transfected into cell lines and tissues and then found out a novel possibility in view of gene transfer and gene expression in comparison to other vector systems. Efficacy of gene transfer and gene expression of this recombinant baculovirus vector was higher than any other vector system.

  • PDF

Construction and Transfection of Recombinant Baculovirus Vectors (재조합 베큘로바이러스 벡터의 제조와 감염)

  • Sa, Young Hee;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.700-703
    • /
    • 2017
  • Baculovirus vectors were recombined using uroplakin II promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), protein transduction domain (PTD) gene and so on. These novel recombinant vectors were infected into various cell lines. We performed and analyzed gene transfer and gene expression of these recombinant vectors comparison with other control vectors. From this result, we identified that these recombinant vectors have higher efficient gene transfer and expression of than control vector.

  • PDF

Establishment of Baculovirus Infected Insect Cell Line Expressing Porcine Salivary Lipocalin(SAL1) Protein

  • Seo, Hee-Won;Park, Da-Young;Kim, Min-Goo;Ahn, Mi-Hyun;Ko, Ki-Narm;Ko, Ki-Sung;Ka, Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.71-76
    • /
    • 2009
  • Salivary lipocalin (SAL1) is a member of the lipocalin protein family that has a property to associate with many lipophilic molecules. The importance of SAL1 during pregnancy in pigs has been suggested by our previous study which has shown that SAL1 is expressed in the uterine endometrium in a cell type- and implantation stage-specific manner and secreted into the uterine lumen. However, function of SAL1 in the uterus during pregnancy in pigs is not known. To understand SAL1 function in the uterus during pregnancy, we generated recombinant porcine SAL1 protein in an insect cell line. Porcine SAL1 cDNA was cloned into a baculovirus expression vector using RT-PCR and total RNA from uterine endometrium on day 12 of pregnancy, and the expression vector was used to generate recombinant Bacmid containing the SAL1 gene. The recombinant Bacmid was then transfected Sf9 cell to produce recombinant baculovirus. By infecting Sf9 cell with recombinant baculovirus, we established a SAL1-expressing insect cell expression system. Immunoblot analysis confirmed SAL1 expression in the infected cells. Recombinant SAL1 produced by the Sf9 cell line will be useful for understanding physiological function of SAL1 during pregnancy in pigs.

Efficacy of Recombinant Baculovirus Vector Reconstructed in pcDNA3.1 Vector (pcDNA3.1 벡터에서 재구성된 재조합 Baculovirus 벡터의 효능)

  • Sa, Young-Hee;Choi, Chang-Shik;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.444-447
    • /
    • 2018
  • Baculovirus expression systems have many known advantages including fast and cost-effective methods to generate large amounts of recombinant proteins in comparison to bacterial expression systems, particularly those requiring complex post-translational modifications. Especially, recombinant baculoviruses can transfer their vectors and express their recombinant proteins in a wide range of mammalian cell types. In this study, baculoviral vectors which were reconstructed from pcDNA3.1 vector, were recombined with cytomegalovirus (CMV) promoter,uroplakin II promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). These recombinant vectors were infected with various cells and cell lines. The baculovirus vector thus developed was analyzed by comparing the metastasis and expression of the recombinant genes with conventional vectors. These results suggest that the baculovirus vector has higher efficiency in metastasis and expression than the control vector.

  • PDF

Seeds as Repositories of Recombinant Proteins in Molecular Farming

  • Moloney, Maurice M.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.283-297
    • /
    • 2000
  • Seeds are an ideal repository for recombinant proteins in molecular farming applications. However, in order to use plant seeds efficiently for the production of such proteins, it is necessary to understand a number of fundamental biological properties of seeds. This includes a full understanding of promoters which function in a seed-specific manner, the subcellular targeting of the desired polypeptide and the final form in which a protein is stored. Once a biologically active protein has been deposited in a seed, it is also critical that the protein can be extracted and purified efficiently. In this review, these issues are examined critically to provide a number of approaches which may be adopted for production of recombinant proteins in plants. Particular attention is paid to the relationship between subcellular localization and protein extraction and purification. The robustness and flexibility of seed-based production is illustrated by examples close to or already in commercial production.

  • PDF

TNF-${\alpha}$ Up-regulated the Expression of HuR, a Prognostic Marker for Ovarian Cancer and Hu Syndrome, in BJAB Cells

  • Lee, Kyung-Yeol
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.184-189
    • /
    • 2004
  • Background: Hu syndrome, a neurological disorder, is characterized by the remote effect of small cell lung cancer on the neural degeneration. The suspicious effectors for this disease are anti-Hu autoantibodies or Hu-related CD8+ T lymphocytes. Interestingly, the same effectors have been suggested to act against tumor growth and this phenomenon may represent natural tumor immunity. For these diagnostic and therapeutic reasons, the demand for antibodies against Hu protein is rapidly growing. Methods: Polyclonal and monoclonal antibodies were generated using recombinant HuR protein. Western blot analyses were performed to check the specificity of generated antibodies using various recombinant proteins and cell lysates. Extracellular stimuli for HuR expression had been searched and HuR-associated proteins were isolated from polysome lysates and then separated in a 2-dimensional gel. Results: Polyclonal and monoclonal antibodies against HuR protein were generated and these antibodies showed HuR specificity. Antibodies were also useful to detect and immunoprecipitate endogenous HuR protein in Jurkat and BJAB. This report also revealed that TNF-${\alpha}$ treatment in BJAB up-regulated HuR expression. Lastly, protein profile in HuR-associated mRNAprotein complexes was mapped by 2-dimensional gel electrophoresis. Conclusion: This study reported that new antibodies against HuR protein were successfully generated. Currently, project to develop a diagnostic kit is in process. Also, this report showed that TNF-${\alpha}$ up-regulated HuR expression in BJAB and protein profile associated with HuR protein was mapped.

The Structural Characterization of Recombinant Bovine Somatotropin Expressed in Escherichia coli (재조합 소성장호르몬의 구조적 특성)

  • 김정호;김훈주박은숙김준
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.165-173
    • /
    • 1994
  • In this paper we have described the structural characterization of recombinant bovine somatotropin produced in Escherichia coli. Recombinant bovine somatotropin consists of 191 amino acid residues with a calculated molecular weight of 21,802 Da. For fragmentation of recombinant bovine somatotropin, we have used trypsin, Staphylococcus aureus V8 pretease, CNBr, and mild acid hydrolysis method. Digestion and cleavage with these proteases and chemicals yielded peptides of various size for amino acid sequence determination. The N-terminal sequence analysis was carried out up to thirty residues. Because the design of the recombinant bovine somatotropin gene for expression was such that the coding sequence begins with an initiation codon, AUG, before Ala, the first amino acid of bovine somatotropin, we could expect the initial amino acid as N-formyl Met. But the first amino acid of this protein, expressed in E. coli cells as inclusion bodies, was Ala. And the amino acid composition of RP-HPLC purified recombinant bovine somatotropin was determined and no essencial difference was observed. The amino acid sequence of the recombinant bovine somatotropin was identical to that predicted from its recombinant gene. There was no processing or replacement of amino acid residues in recombinant bovine somatotropin expressed in E. coli. The hydropathy plot of recombinant bovine somatotropin revealed a hydrophobic region at the NH2-terminus and hydrophilic region at the COOH-terminus. The E. coli expression system is thought to be valuable for the expression of recombinant bovine somatotropin because protein was processed to remove the N-terminal Met residue by methionyl-aminopeptidase autonomously.

  • PDF

Generation and Expression in Plants of a Single-Chain Variable Fragment Antibody Against the Immunodominant Membrane Protein of Candidatus Phytoplasma Aurantifolia

  • Shahryari, F.;Safarnejad, M.R.;Shams-Bakhsh, M.;Schillberg, S.;Nolke, G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1047-1054
    • /
    • 2013
  • Witches' broom of lime is a disease caused by Candidatus Phytoplasma aurantifolia, which represents the most significant global threat to the production of lime trees (Citrus aurantifolia). Conventional disease management strategies have shown little success, and new approaches based on genetic engineering need to be considered. The expression of recombinant antibodies and fragments thereof in plant cells is a powerful approach that can be used to suppress plant pathogens. We have developed a single-chain variable fragment antibody (scFvIMP6) against the immunodominant membrane protein (IMP) of witches' broom phytoplasma and expressed it in different plant cell compartments. We isolated scFvIMP6 from a naïve scFv phage display library and expressed it in bacteria to demonstrate its binding activity against both recombinant IMP and intact phytoplasma cells. The expression of scFvIMP6 in plants was evaluated by transferring the scFvIMP6 cDNA to plant expression vectors featuring constitutive or phloem specific promoters in cassettes with or without secretion signals, therefore causing the protein to accumulate either in the cytosol or apoplast. All constructs were transiently expressed in Nicotiana benthamiana by agroinfiltration, and antibodies of the anticipated size were detected by immunoblotting. Plant-derived scFvIMP6 was purified by affinity chromatography, and specific binding to recombinant IMP was demonstrated by enzyme-linked immunosorbent assay. Our results indicate that scFvIMP6 binds with high activity and can be used for the detection of Ca. Phytoplasma aurantifolia and is also a suitable candidate for stable expression in lime trees to suppress witches' broom of lime.