• Title/Summary/Keyword: Recombinant Protein Production

Search Result 489, Processing Time 0.029 seconds

Fermentation Strategies for Recombinant Protein Expression in the Methylotrophic Yeast Pichia pastoris

  • Zhang, Senhui;Inan, Mehmet;Meagher, Michael M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.275-287
    • /
    • 2000
  • Fermentation strategies for recombinant protein production in Pichia pastoris have been investigated and are reviewed here. Characteristics of the expression system, such as phenotypes and carbon utilization, are summarized. Recently reported results such as growth model establishment, app58lication of a methanol sensor, optimization of substrate feeding strategy, DOstat controller design, mixed feed technology, and perfusion and continuous culture are discussed in detail.

  • PDF

Production of the recombinant fibronectin-binding protein of Staphylococcus aureus (Staphylococcus aureus의 재조합 fibronectin-binding protein의 생산)

  • kim, Doo;Cheong, Cha-ryong;Park, Hee-myong;Han, Hong-ryul
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.4
    • /
    • pp.875-882
    • /
    • 1997
  • To produce the recombinant fibronectin-binding protein(FnBP) for development of subunit vaccine against Staphylococcus aureus. The fnbp gene was amplified from the chromosomal DNA of S aureus KNU 196 strain using the polymerase chain reaction, and cloned into pGEX-4T-2. Then, the recombinant FnBP fused with glutathione-S-transferase was produced in E coli, purified by affinity chromatography, and identified its antigenicity and immunogenicity by Western blot. The recombinant FnBP produced in this study is considered to have the same property of native FnBP purified from S aureus, and is expected to be useful as a candidate for S aureus subunit vaccine.

  • PDF

Construction of a Novel Baculovirus Autographa californica Nuclear Polyhedrosis Virus Producing the Fluorescent Polyhedra

  • Je, Yeon-Ho;Jin, Byung-Rae;Roh, Jong-Yul;Chang, Jin-Hee;Kang, Seok-Kwon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • A novel recombinant baculovirus Autographa californica nuclear polyhedrosis virus (ACNPV) producing the green fluorescent polyhedra was constructed and characterized. The recombinant virus was stably produced fluorescent polyhedra in the infected cells and the morphology of the polyhedra was nearly similar to that of wild-type AcNPV. For the production of the fluorescent polyhedral the green fluorescent protein (GFP) gene was introduced under the control of polyhedrin gene promoter of AcNPV by translational fusion in the front and back of intact polyhedrin gene. The recombinant baculovirus was named as CXEP, As expected, the 93 kDa fusion protein was expressed in the CXEP-infected cells. Interestingly, however, the cells infected with CXEP also showed a 33 kDa protein band as cells infected with wild-type AcNPV. The results of Southern blot analysis and plaque assay suggested that two types of baculoviruses expressing the GFP fusion protein or only native polyhedrin were formed through homologous recombination between two polyhedrin genes in the same orientation. Thus, this system can be applied for the production of recombinant polyhedra with foreign gene product of diverse interest.

  • PDF

Production of Theileria sergenti recombinant protein by E coli expression system

  • Park, Jin-ho;Chae, Joon-seok;Kim, Dae-hyuk;Jang, Yong-suk;Kwon, Oh-deong;Lee, Joo-mook
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.786-796
    • /
    • 1999
  • As an attempt to develop an effective control method against theileriosis, recombinant antigen protein was produced. Thirty-two kDa membrane protein(MP) gene of T sergenti was amplified through RT-PCR from extracted total RNA of T sergenti isolated in Chonbuk, Korea. The amplified 869 bp of Korean T sergenti membrane gene was cloned and the base sequences were analyzed. The amplified gene was cloned into E coli expression vector, pQE32 plasmid vector, and the vector was introduced into E coli strain M15 to produce the recombinant membrane protein. For the induction of T sergenti membrane protein(KTs-MP), the plasmid harboring E coli strain M15 were cultured in the presence of IPTG, and the recombinant protein were purified by $Ni^+$-NTA agarose. Then, to confirm the authenticity of the produced membrane protein, molecular weight of expressed recombinant KTs-MP was analyzed by SDS-PAGE and Western blotting. The molecular weight of expressed recombinant protein was 32 kDa as expected. The recombinant KTs-MP was successfully recognized by anti-His Tag antibody, antisera of T sergenti infected cattle and monoclonal antibody of T sergenti membrane protein. Therefore, we concluded that the authentic 32 kDa membrane protein of T sergenti was produced as immunologically recognizable form.

  • PDF

Engineering the Cellular Protein Secretory Pathway for Enhancement of Recombinant Tissue Plasminogen Activator Expression in Chinese Hamster Ovary Cells: Effects of CERT and XBP1s Genes

  • Rahimpour, Azam;Vaziri, Behrouz;Moazzami, Reza;Nematollahi, Leila;Barkhordari, Farzaneh;Kokabee, Leila;Adeli, Ahmad;Mahboudi, Fereidoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1116-1122
    • /
    • 2013
  • Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERT-S132A-based secretion engineering could be an effective strategy for enhancing recombinant t-PA production in CHO cells.

Effective Platform for the Production of Recombinant Outer Membrane Vesicles in Gram-Negative Bacteria

  • Kunjantarachot, Anthicha;Phanaksri, Teva
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.621-629
    • /
    • 2022
  • Bacterial outer membrane vesicles (OMVs) typically contain multiple immunogenic molecules that include antigenic proteins, making them good candidates for vaccine development. In animal models, vaccination with OMVs has been shown to confer protective immune responses against many bacterial diseases. It is possible to genetically introduce heterologous protein antigens to the bacterial host that can then be produced and relocated to reside within the OMVs by means of the host secretion mechanisms. Accordingly, in this study we sought to develop a novel platform for recombinant OMV (rOMV) production in the widely used bacterial expression host species, Escherichia coli. Three different lipoprotein signal peptides including their Lol signals and tether sequences-from Neisseria meningitidis fHbp, Leptospira interrogans LipL32, and Campylobactor jejuni JlpA-were combined upstream to the GFPmut2 model protein, resulting in three recombinant plasmids. Pilot expression studies showed that the fusion between fHbp and GFPmut2 was the only promising construct; therefore, we used this construct for large-scale expression. After inducing recombinant protein expression, the nanovesicles were harvested from cell-free culture media by ultrafiltration and ultracentrifugation. Transmission electron microscopy demonstrated that the obtained rOMVs were closed, circular single-membrane particles, 20-200 nm in size. Western blotting confirmed the presence of GFPmut2 in the isolated vesicles. Collectively, although this is a non-optimized, proof-of-concept study, it demonstrates the feasibility of this platform in directing target proteins into the vesicles for OMV-based vaccine development.

Effect of a Bombyx mori Protein Disulfide Isomerase on Production of Recombinant Antibacterial Peptides

  • Goo, Tae-Won;Kim, Seong-Wan;Choi, Kwang-Ho;Kim, Seong-Ryul;Kang, Seok-Woo;Park, Seung-Won;Yun, Eun-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.119-123
    • /
    • 2013
  • The insect baculovirus expression vector system (BEVS) is useful for producing biologically active recombinant proteins. However, the overexpression of heterologous proteins using this system often results in misfolded proteins and the formation of protein aggregates. To overcome this limitation, we developed a versatile baculovirus expression and secretion system using Bombyx mori protein disulfide isomerase (bPDI) as a fusion partner. bPDI gene fusion was found to improve the secretions and antibacterial activities of recombinant nuecin and enbocin proteins. Thus, we conclude that bPDI gene fusion is a useful addition to BEVS for the large-scale production of bioactive recombinant proteins.

Effect of IPTG Induction on Production of ${\beta}$-Galactosidase-PreS2 Fusion Protein in Recombinant Escherichia coli

  • Nam, Soo-Man;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.274-280
    • /
    • 1991
  • Effects of IPTG induction on cell growth and production of ${\beta}$-galactosidase-preS2 fusion protein (${\beta}$gal-preS2) were studied in a defined medium using a recombinant Escherichia coli JM109/pCMHB30. IPTG was added (0.2 mM) to induce the cloned-gene expression in the early-, mid-, and late-log growth phases. The most serious decreases in growth rate and plasmid stability were observed for the induction in the early-log growth phase. The expression level of ${\beta}$gal-preS2 attained by the induction in the mid-log phase was about 0.51 mg fusion protein/mg total cellular protein, which was 2- and 5-fold improvement over the levels obtained with the inductions in the early- and late-log phases. Formation of acidic byproducts including acetate and pyruvate showed different profiles during the fermentation period for each cases of induction; pyruvate was the major byproduct for the induction in the early-log phase while acetate production became more significant for the cases of inductions in the mid- and late-log phases.

  • PDF

Coexpression of Protein Disulfide Isomerase (PDI) Enhances Production of Kringle Fragment of Human Apolipoprotein(a) in Recombinant Saccharomyces cerevisiae

  • Cha Kwang-Hyun;Kim Myoung-Dong;Lee Tae-Hee;Lim Hyung-Kweon;Jung Kyung-Hwan;Seo Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.308-311
    • /
    • 2006
  • In an attempt to increase production of LK8, an 86-amino-acid kringle fragment of human apolipoprotein(a) with three disulfide linkages, protein disulfide isomerase (PDI) was coexpressed in recombinant Saccharomyces cerevisiae harboring the LK8 gene in the chromosome. Whereas overexpression of the LK8 gene without coexpressing PDI was detrimental to both host cell growth and LK8 production, coexpression of PDI increased the LK8 production level by 2.5-fold in batch cultivation and 5.0-fold in fed-batch cultivation compared with the control strain carrying only the genomic PDI gene.

Bombyx mori protein disulfide isomerase enhances the production of nuecin, an antibacterial protein

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Choi, Kwang-Ho;Kang, Seok-Woo;Kwon, Ki-Sang;Yu, Kweon;Kwon, O-Yu
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.400-403
    • /
    • 2008
  • The insect baculovirus expression vector system (BEVS) is useful for producing biologically active recombinant proteins. However, the overexpressions of foreign proteins using this system often results in misfolded proteins and the formation of protein aggregates. To overcome this limitation, we developed a versatile baculovirus expression and secretion system using Bombyx mori protein disulfide isomerase (bPDI) as a fusion partner. bPDI gene fusion was found to improve the secretions and antibacterial activities of recombinant nuecin proteins. Thus, we conclude that bPDI gene fusion is a useful addition to BEVS for the large-scale production of bioactive recombinant proteins.